INTERNATIONAL STANDARD

ISO 2580-1

13

Second edition 1990-10-15

Plastics — Acrylonitrile/butadiene/styrene (ABS) moulding and extrusion materials —

Part 1: iTeh S Designation D PREVIEW

(standards.iteh.ai)

Plastiques — Plastiques à base d'acrylonitrile/butadiène/styrène (ABS) pour moulage et extrusion https://standards.iteh.ai/catalog/standards/sist/bdcc9dcc-8f52-4971-91b7-Partie 1: Désignation Partie 1: Désignation

Reference number ISO 2580-1:1990(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

International Standard ISO 2580-1 was prepared by Technical Committee ISO/TC 61, Plastics.

This second edition cancels and replace <u>so theo-firsto</u> edition (ISO 2580-1:1978), of which it constitutes a technical revision st/bdcc9dcc-8f52-4971-91b7-

ISO 2580 consists of the following parts, under the general title Plastics – Acrylonitrile/butadiene/styrene (ABS) moulding and extrusion materials:

- Part 1: Designation

- Part 2: Determination of properties

© ISO 1990

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization

Case Postale 56 • CH-1211 Genève 20 • Switzerland Printed in Switzerland

Plastics — Acrylonitrile/butadiene/styrene (ABS) moulding and extrusion materials -

Part 1: Designation

1 Scope

- with an Izod impact strength less than 3 kJ/m^2 ,

containing more than 5 % (m/m) of comonomers other than those mentioned in 1.3, 1.1 This part of ISO 2580 establishes a system of

designation for acrylonitrile/butadiene/styrene containing less than 40 % (m/m) of butadiene in (ABS) thermoplastic materials, which may be used the elastomer of the elastomeric phase. standards as the basis for specifications.

ISO 2580-1:1990 .4 It is not intended to imply that materials having 1.2 The types of ABS plastic are differentiated from ds/sist/the same designation give necessarily the same each other by a classification system based on lapso-2580 performance. This part of ISO 2580 does not provide engineering data, performance data or data on propriate levels of the designatory properties processing conditions which may be required to

- a) Vicat softening temperature,
- b) melt flow rate,
- c) impact strength and
- d) flexural modulus,

and on information about composition, intended application, method of processing, important properties, additives, colour and fillers.

1.3 This designation system is applicable to all styrene/acrylonitrile copolymers comprised of a continuous phase, consisting of copolymers of styrene (and/or an alkyl-substituted styrene) and acrylonitrile, and a dispersed elastomeric phase based on butadiene, with the continuous phase having more than 10 % (m/m) of acrylonitrile.

It applies to materials ready for normal use in the form of powder, granules or pellets, unmodified and modified by colorants, additives, fillers, etc.

This part of ISO 2580 does not apply to materials

specify a material for a particular application or method of processing. If such additional properties are required, they shall

be determined in accordance with the test methods specified in ISO 2580-2, if suitable.

1.5 In order to specify a thermoplastic material for a particular application, additional requirements may be specified in Data Block 5 (see clause 3).

Normative references 2

The following standards contain provisions which, through reference in this text, constitute provisions of this part of ISO 2580. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this part of ISO 2580 are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 178:1975, Plastics — Determination of flexural properties of rigid plastics.

ISO 180:1982, Plastics — Determination of Izod impact strength of rigid materials.

ISO 293:1986, Plastics — Compression moulding test specimens of thermoplastic materials.

ISO 306:1987, Plastics — Thermoplastic materials — Determination of Vicat softening temperature.

ISO 1043-1:1987, Plastics — Symbols — Part 1: Basic polymers and their special characteristics.

ISO 1043-2:1988, Plastics — Symbols — Part 2: Fillers and reinforcing materials.

ISO 1133:1981, Plastics — Determination of the melt flow rate of thermoplastics.

ISO 1656:1988, Rubber, raw natural, and rubber latex, natural – Determination of nitrogen content.

ISO 2557-1:1989, Plastics — Amorphous thermoplastics — Preparation of test specimens with a specified maximum reversion — Part 1: Barsen STAND The designation consists of an optional Description Block, reading Thermoplastics, and an Identity Block comprising the International Standard number and an Individual Item Block. For unambiguous designation, the Individual Item Block is subdivided into 4 data blocks comprising the following information:

Data Block 1: Identification of the plastic by its symbol (ABS) and information about the composition of the copolymer (see 3.1).

Data Block 2: Position 1: Intended application or method of processing (see 3.2).

Positions 2 to 4: Important properties, additives and supplementary information (see 3.2).

Data Block 3: Designatory properties (see 3.3).

Data Block 4: Fillers or reinforcing materials and the nominal content thereof (see 3.4).

For the purpose of specifications, a fifth data block may be added containing additional information. The kind of information and the code-letters used are not the subject of this part of ISO 2580.

ISO 2580-2:1982, Plastics **Standard The first character** of the Individual Item Block shall be a hyphen. be a hyphen.

ISO 2580-the Your data blocks shall be separated from each https://standards.iteh.ai/catalog/standarother/bycadcomma4971-91b7-

ISO 8328:1989, Plastics — Amorphous thermoplastic?f14/iso-2580-1-1990 moulding materials — Determination of maximum reversion. If a data block is not used, this shall be indicated by doubling the separation sign, i.e. by two commas (,,).

3 Designation system

erties.

The designation system for thermoplastics is based on the standardized pattern given in figure 1.

		Designation		5			
Description Block (optional)		ldei	ntity Block				
			Individual Item Block				
	International Standard Block	Data Block 1	Data Block 2	Data Block 3	Data Block 4	Data Block 5	

3.1 Data Block 1

In this data block, after the hyphen, the plastic is identified by its symbol (ABS) (see 1.3) in accordance with ISO 1043-1 and, after a space, the acrylonitrile content of the continuous phase is designated by a single-figure code-number, as specified in table 1.

Table	1	 Codes	used	for	acrylonitrile	content in
			Data	Blo	ck 1	

Code	Range of AN content % (<i>m/m</i>)	
1	> 10 to ≤ 30	
2	> 30	

For the purposes of this part of ISO 2580, the AN content of the continuous phase shall be determined by the Kjeldahl method, as specified in ISO 1656, or, alternatively, by a pyrolysis/thermal conductivity method.

3.2 Data Block 2

In this data block, information about the intended papilication or method of processing is given in position 1 and information about important properties, additives and colour in positions 2 to 4. The codeletters used are specified in table 2.

Code- letter	Position 1	Positions 2 to 4
A	General and an	Processing stabilized
в		Antiblocking
С		Coloured
E	Extrusion of pipes, profiles and sheet	
F	Extrusion of film and thin sheeting	Special burning char- acteristics
G	General use	Pellets; granules
Н		Heat-ageing stabi- lized
L		Light and/or weather stabilized
м	Injection moulding	
N		Natural (not col- oured)
R		Moulding release agent
S		Lubricated
X	No indication	
z		Antistatic

Table 2 - Code-letters used in Data Block 2

If information is presented in positions 2 to 4 and no specific information is given in position 1, the letter X shall be inserted in position 1.

3.3 Data Block 3

In this data block, the Vicat softening temperature is represented by a three-figure code-number (see 3.3.1), the melt flow rate by a two-figure codenumber (see 3.3.2), the impact strength by a twofigure code-number (see 3.3.3) and the flexural modulus by a two-figure code-number (see 3.3.4). The four codes are separated from each other by hyphens.

If a property value falls on or near a range limit, the manufacturer shall state which range will designate the material. If subsequent individual test values lie on, or either side of, the range limit because of manufacturing tolerances, the designation is not affected.

NOTE 1 Not all combinations of the values of the designatory properties are provided by currently available materials.

PREVIEW

ISO 2580-1:199

3.3.1 Vicat softening temperature

The Vicat softening temperature (VST) shall be determined in accordance with ISO 306, method B, using a test load of 50 N \pm 1 N and a heating rate

of 50 °C/h \pm 5 °C/h, with test specimens moulded from dry material and stored in a desiccator at 23 °C \pm 2 °C until tested. The possible values of the VST are divided into four ranges, each represented by a three-figure code-number, as specified in table 3.

Table 3 — Codes used for Vicat softening temperature in Data Block 3

VST range ℃
≤ 90
> 90 to ≤ 100
> 100 to ≤ 110
> 110

3.3.2 Melt flow rate

The melt flow rate (MFR) shall be determined in accordance with ISO 1133, using set of test conditions No. 19 (temperature 220 °C, load 10 kg). The material for the determination of the melt flow rate shall be conditioned for 4 h at 80 °C, or in accordance with the manufacturer's recommendations, and then stored in a desiccator at 23 °C \pm 2 °C until tested.

The possible values of the MFR are divided into four ranges, each represented by a two-figure codenumber, as specified in table 4.

Table 4 — Codes used for melt flow rate in Data Block 3

Code	MFR range g/10 min	
04	≤ 5	
08	≤ 5 > 5 to ≤ 10	
15	> 10 to ≤ 20	
25	> 20	

3.3.3 Izod impact strength

The Izod impact strength shall be determined with test specimens in the basic state (see ISO 2557-1), having a maximum reversion S_m , measured in accordance with ISO 8328, of < 5 %. The test specimens shall be prepared either by compression moulding, in accordance with ISO 293, or, alternatively, by thermal relaxation of injection-moulded test specimens, as specified in ISO 2557-1.

The impact strength shall be determined by arc method 4A of ISO 180.

The possible values of the impact strength are divided into five ranges, each represented by a twofigure code-number, as specified in table 5. 06624de17f14/so 2580-1-1990

Table	5	<u>.</u>	Codes	used	for	Izod	impact strength in
				Data	Blo	ock 3	

	Izod impact strength	
Code	Range kJ/m²	
05	> 3 to ≤ 6	
09	> 6 to ≤ 12	
16	> 12 to ≤ 20	
25	> 20 to ≤ 30	
35	> 30	

3.3.4 Flexural modulus

The flexural modulus shall be determined in accordance with ISO 178 with 80 mm \times 10 mm \times 4 mm test specimens in the basic state, prepared as specified in 3.3.3.

The possible values of the flexural modulus are divided into four ranges, each represented by a twofigure code-number, as specified in table 6.

Material (Position 1)	Form (Position 2)
Boron	Balls; beads; spheres
Carbon ¹⁾	
	Powder; dry blend
	Fibre
Glass	Granules; ground
	Whiskers
Chalk (CaCO₃)	
Mineral ¹⁾ ; metal ²⁾	
	Scale, flake
Talcum	
Not specified	Not specified
Others ¹⁾	Others
	(Position 1) Boron Carbon ¹⁾ Glass Chalk (CaCO ₃) Mineral ¹⁾ ; metal ²⁾ Talcum Not specified

1) These materials may be defined by two letters after position 4 of the data block, for example by chemical symbol, additional codes or codes to be agreed upon.

2) Metal filler shall be identified by the chemical symbol (in capital letters) after the mass content. For example steel whiskers may be designated "MH05FE".

Table 6 — Codes used for flexural modulus in Data Block 3

Code	Flexural modulus range MPa
15	≤ 1800
20	$> 1800 \text{ to} \le 2300$
25	> 2 300 to ≤ 2 800
30	> 2800

3.4 Data Block 4

In this data block, the type of filler or reinforcing material is represented by one code-letter in position 1 and its physical form by a second letter in position 2 (see table 7 and ISO 1043-2), if requested. Subsequently (without a space), the mass content may be represented by a two-figure code-number in positions 3 and 4, as specified in table 8.

Mixtures of materials or forms may be indicated in parentheses by combining the relevant codes using the sign "+"; for example a mixture of 25 % (m/m) glass fibres (GF) and 10 % (m/m) mineral powder (MD) would be indicated by (G+M) in position 1, (F+D) in position 2 and (25+10) in positions 3 and 4;

Table 8 — Coding system for the mass content in Data Block 4

Code	Mass content % (m/m) (Positions 3 and 4)	
05	≤ 7,5	
10	> 7,5 to ≤ 12,5	
15	> 12,5 to ≤ 17,5	
20	> 17,5 to ≤ 22,5	
25	> 22,5 to \leq 27,5	
30	> 27,5 to ≤ 32,5	
35	> 32,5 to ≤ 37,5	
40	> 37,5 to ≤ 42,5	

4 Example of designation

An ABS moulding material, having an acrylonitrile content of 25 % (m/m) (1), intended for film extrusion (F), coloured (C), antistatic (Z), with a Vicat softening temperature of 95 °C (095), a melt flow rate of 0,5 g/10 min (04), an Izod impact strength of 16 kJ/m² (16) and a flexural modulus of 2 600 MPa (25), would be designated:

Designation: |SO 2580-ABS 1, FCZ,095-04-16-25

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 2580-1:1990</u> https://standards.iteh.ai/catalog/standards/sist/bdcc9dcc-8f52-4971-91b7-06624de17f14/iso-2580-1-1990

UDC 678.745.32-139:678.762.2-139:678.746.22-139:003.62

Descriptors: plastics, moulding materials, extrusions, thermoplastic resins, ABS plastics, designation.

Price based on 5 pages