INTERNATIONAL STANDARD

ISO 22762-5

First edition 2021-08

Elastomeric seismic-protection isolators —

Part 5: Sliding seismic-protection isolators for buildings

Appareils d'appuis structuraux en élastomère pour protection sismique —

Partie 5: Isolateurs de protection sismique glissants pour bâtiments

Document Preview

ISO 22762-5:2021

https://standards.iteh.ai/catalog/standards/iso/5cdccc41-246a-4244-b907-3357d002c060/iso-22762-5-2021

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO 22762-5:2021

https://standards.iteh.ai/catalog/standards/iso/5cdccc41-246a-4244-b907-3357d002c060/iso-22762-5-2021

COPYRIGHT PROTECTED DOCUMENT

© ISO 2021

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Co	ntent	S	Page
Fore	eword		v
Intr	oductio	n	vi
1	Scon	e	1
2	-	native references	
3	Tern	ns and definitions	1
4	Syml	bols	3
5	Class	sification	6
	5.1	Isolator types	6
	5.2	Classification by sliding friction coefficient	
	5.3	Cross-section of isolator	6
6	Requ	uirements	
	6.1	General	
	6.2	Type tests and routine tests	
	6.3 6.4	Functional requirements	
	6.4	Design compressive force and design horizontal velocity	
	0.5	6.5.1 General	
		6.5.2 Tolerance on properties	11
	6.6	Rubber material	11
		6.6.1 Requirements	11
	6.7	Sliding material 6.7.1 Requirements	12
		6.7.1 Requirements	12
	6.8	6.7.2 Sliding materials tests Requirements on steel used for flanges, connecting flanges, key plates, steel plate	
	0.0	backing plates, sliding plates and base plates	
_			
7		tor tests ISO 22762-5:2021 [e] General Log/standards/iso/5odoco41, 246a, 4244, b007, 23574002c060/iso, 22762	13
	7.2	Compression, shear stiffness and friction coefficient tests	
	7.2	7.2.1 Compression properties	
		7.2.2 Compressive-shear test	
	7.3	Various dependence tests	16
		7.3.1 Compressive force dependence of shear properties	
		7.3.2 Velocity dependence of shear properties	
		7.3.3 Repeated deformation dependence of shear properties	
		7.3.4 Temperature dependence of shear properties7.3.5 Vertical loading time dependence of shear properties	
		7.3.6 Dependence of compressive stiffness on compressive stress range	
	7.4	Ultimate shear properties	
		7.4.1 Principle	
		7.4.2 Test machine	28
		7.4.3 Test piece	
		7.4.4 Test conditions	
		7.4.5 Procedure	
		7.4.6 Expression of results 7.4.7 Test report	
	7.5	Durability testing	
	7.5	7.5.1 Degradation test	
		7.5.2 Creep test	
8	Dukl	per material tests	
U	8.1	Tensile properties tests	
	8.2	Hardness test	

ISO 22762-5:2021(E)

	8.3	Ozone resistance test	32
9	Desig 9.1	n rules General	
	9.2	Elastic sliding bearing	
	7.2	9.2.1 Vertical stiffness	33
		9.2.2 Horizontal properties	
		9.2.3 Maximum horizontal displacement	
		9.2.4 Maximum compressive load	
10	Manu	facturing tolerances	34
	10.1	General	
	10.2	Measuring instruments	35
	10.3	Plan dimensions	
		10.3.1 Measurement method	35
		10.3.2 Tolerances	
	10.4	Product height	
		10.4.1 Measurement method	
		10.4.2 Tolerances	
	10.5	Flatness	
		10.5.1 Measurement method	
	10.6	10.5.2 Tolerances	
	10.6 10.7	Horizontal offset	38
	10.7	Plan dimensions of flanges	
	10.8	Flange thickness	39
	10.10	Dimensions of sliding plate	39
	10.11	Thickness of sliding plate	40
11	Marki	ing and labelling	40
11	11.1	General Drown	40
	11.1	General Information to be provided	40
	11.3	Additional requirements	41
	11.4	Marking and labelling examples S.O. 22762 5:2021	
12 12	Test n	nethods ai/catalog/standards/iso/5cdccc41-246a-4244-b907-3357d002c060	/iso-22762 41 -202
13		ty assurance	
Bibli	•	<i>T</i>	

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 45, *Rubber and Rubber Products*, Subcommittee SC 4, *Products (other than hoses)*.

A list of all parts in the ISO 22762 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

The ISO 22762 series consists of five parts related to specifications for isolators. They are: ISO 22762-1 for test method, ISO 22762-2 for bridges, ISO 22762-3 for buildings, ISO/TS 22762-4 for guidance of ISO 22762-3, and ISO 22762-5 for elastomeric sliding isolators for buildings.

This document specifies minimum requirements and test methods for elastomeric sliding isolators used for buildings and the rubber material used in the manufacture of such isolators.

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO 22762-5:2021

https://standards.iteh.ai/catalog/standards/iso/5cdccc41-246a-4244-b907-3357d002c060/iso-22762-5-2021

Elastomeric seismic-protection isolators —

Part 5:

Sliding seismic-protection isolators for buildings

1 Scope

This document specifies minimum requirements and test methods for flat sliding seismic-protection isolators used for buildings and the materials used in the manufacture of such isolators.

It is applicable to flat sliding seismic-protection isolators used to provide buildings with protection from earthquake damage. The sliders are each mounted on elastomeric bearings to provide vertical compliance and rotational flexibility about horizontal axes.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 37, Rubber, vulcanized or thermoplastic — Determination of tensile stress-strain properties

ISO 48-2, Rubber, vulcanized or thermoplastic — Determination of hardness — Part 2: Hardness between 10 IRHD and 100 IRHD

ISO 48-5, Rubber, vulcanized or thermoplastic — Determination of hardness — Part 5: Indentation hardness by IRHD pocket meter method $_{150,22762,52021}$

 $\textbf{ISO 527, Plastics} \leftarrow \textbf{Determination of tensile properties} = 4244 - 6907 - 3357 d002 c060/iso-22762 - 5-2021 - 6907$

ISO 868, Plastics and ebonite — Determination of indentation hardness by means of a durometer (Shore hardness)

ISO 1431-1, Rubber, vulcanized or thermoplastic — Resistance to ozone cracking — Part 1: Static and dynamic strain testing

ISO 2039, Plastics — Determination of hardness

ISO 22762-1, Elastomeric seismic-protection isolators — Part 1: Test methods

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at https://www.electropedia.org/

3.1

breaking

rupture of elastomeric isolator due to compression (or tension)-shear loading

3.2

buckling

state when elastomeric isolators lose their stability under compression-shear loading

3.3

compressive properties

 K_{v}

compressive stiffness for elastomeric sliding isolators

3.4

compression-shear testing machine

machine used to test sliding isolators, which has the capability of shear loading under constant compressive load

3.5

contact time

time from the end of subjecting the test piece to a compressive force to the start of subjecting a shear force when performing the compressive-shear test

3.6

cover rubber

rubber wrapped around the outside of inner rubber and reinforcing steel plates before or after curing of elastomeric isolators for the purposes of protecting the inner rubber from deterioration due to oxygen, ozone and other natural elements and protecting the reinforcing plates from corrosion

3.7

design compressive stress

long-term compressive force on the sliding isolator imposed by the structure

3.8

effective loaded area

area sustaining vertical load in elastomeric isolators, which corresponds to the area of reinforcing steel plates

3.9 tps://standar

effective width

smallest of the two side lengths of inner rubber to which direction shear displacement is not restricted

3.10

elastomeric sliding isolator

sliding isolator with rubber bearing which consists of multi-layered vulcanized rubber sheets and reinforcing steel plates

3.11

first shape factor

ratio of effective loaded area (3.8) to free deformation area of one inner rubber layer between steel plates

3.12

inner rubber

rubber between multi-layered steel plates inside an elastomeric isolator

2 12

maximum compressive stress

peak stress acting briefly on sliding isolators in compressive direction during an earthquake

3.14

routine test

test for quality control of the production isolators during and after manufacturing

3.15

second shape factor

(circular elastomeric isolator) ratio of the diameter of the *inner rubber* (3.12) to the total thickness of the *inner rubber* (3.12)

3.16

second shape factor

(square or square elastomeric isolator) ratio of the *effective width* (3.9) of the *inner rubber* (3.12) to the total thickness of the *inner rubber* (3.12)

3.17

shear properties of sliding isolators

comprehensive term that covers characteristics determined from isolator tests:

- initial shear stiffness, K_{ij} for elastomeric sliding isolator (3.10);
- friction coefficient, μ , for elastomeric sliding isolator (3.10).

3.18

sliding material

material which provides sliding functionality, when used as counterface to sliding plate

3.19

sliding plate

plate which provides sliding functionality

3.20

sliding friction coefficient

ratio of friction force versus normal compression force of sliding friction pair

3.21

standard value

value of isolator property defined by manufacturer based on the results of type test

3.22

<u>180 22/62-5:2021</u>

structural engineer log/standards/iso/5cdccc41-246a-4244-b907-3357d002c060/iso-22762-5-2021 engineer who is in charge of designing the structure for base-isolated buildings and is responsible for

engineer who is in charge of designing the structure for base-isolated buildings and is responsible for specifying the requirements for sliding isolators

3.23

type test

test for verification either of material properties and isolator performances during development of the product or that project design parameters are achieved

3.24

ultimate properties

properties at either buckling (3.2) or breaking (3.1) of an isolator under compression-shear loading

4 Symbols

For the purposes of this document, the symbols given in <u>Table 1</u> apply.

Table 1 — Symbols and descriptions

Symbol	Description
A	effective plan area of elastomeric sliding isolator, excluding cover rubber portion
A_{b}	effective area of bolt
A_{e}	overlap area between the top and bottom elastomer area of isolator
$A_{\rm load}$	effective loaded area of isolator

Table 1 (continued)

Symbol	Description
$A_{\rm s}$	area of the sliding material
$\frac{a}{a}$	side length of square elastomeric isolator, excluding cover rubber thickness
	length of the square isolator, including cover rubber thickness
$\frac{a_{\mathrm{e}}}{a_{\mathrm{f}}}$	side length of square flange
_	side length of square sliding material
$a_{\rm s}$	side length of square sliding plate
$\frac{a_{\rm sp}}{a'}$	length of the square isolator, including cover rubber thickness
— и В	effective width for bending of flange
<u></u> С	bolt hole pitch circle diameter of on flange
	diameter of sliding material
$\frac{D_{\rm s}}{D'}$	outer diameter of circular isolator, including cover rubber
	diameter of flange
$D_{\rm f}$	inner diameter of reinforcing steel plate
$\frac{d_{\rm i}}{d}$	diameter of bolt hole
$\frac{d_{\mathrm{k}}}{d}$	
$\frac{d_0}{E}$	outer diameter of reinforcing steel plate
$E_{\rm ap}$	apparent Young's modulus of bonded rubber layer apparent Young's modulus corrected, if necessary, by allowing for compressibility
$E_{\rm c}$	
$E_{\rm c}^{\rm s}$	apparent Young's modulus corrected for bulk compressibility depending on its shape factor (S_1) bulk modulus of rubber
E_{∞}	/https://standards.itah.ail
E_0	Young's modulus of rubber shear modulus
G	
$G_{eq}(\gamma)$	equivalent linear shear modulus at shear strain
H	height of sliding isolator, including mounting flange
H _n	height of sliding isolator, excluding mounting flange
$K_{\rm i}$	
K _v	compressive stiffness
$L_{\rm f}$	length of one side of a square flange
M	resistance to rotation
$M_{\rm f}$	moment acting on bolt
M _r	moment acting on isolator
n	number of rubber layers
$n_{\rm b}$	number of fixing bolts compressive force
P P	^
P_0	design compressive force in absence of seismic action effects maximum compressive force including seismic action effects
P _{max}	minimum compressive force including seismic action effects minimum compressive force including seismic actions effects
P_{\min}	shear force
Q	shear force at break
Q_b	shear force at buckling
$Q_{\rm buk}$	characteristic strength
$Q_{\rm d}$	first shape factor
S_1	
S_2	second shape factor
T	temperature

Table 1 (continued)

Symbol	Description
T_0	standard temperature, 23 °C or 27 °C;
Ü	where specified tolerance is ± 2 °C, T_0 is standard laboratory temperature
T_r	total rubber thickness, given by $T_r = n \times t_r$
$\frac{-t_r}{t_r}$	thickness of one rubber layer
$t_{\rm r1}, t_{\rm r2}$	thickness of rubber layer laminated on each side of plate
$t_{\rm s}$	thickness of one reinforcing steel plate
$t_{\rm sm}$	protruding length of sliding material
t_0	thickness of outside cover rubber
<i>U</i> (γ)	function giving ratio of characteristic strength to maximum shear force of a loop
V	uplift force
v	loading velocity
v_0	design horizontal velocity
$v_{\rm nom}$	for building: nominal horizontal velocity recommended by manufacturer
$W_{\rm d}$	energy dissipated per cycle
X	shear displacement
X_0	design shear displacement
$X_{\rm b}$	shear displacement at break
$X_{\rm buk}$	shear displacement at buckling 221101211018
X_{s}	shear displacement due to quasi-static shear movement
X_{\max}	maximum shear displacement
$X_{\rm d}$	shear displacement due to dynamic shear movement
Y	compressive displacement
Z	section modulus of flange
α	coefficient of linear thermal expansion
rstandards γ	shear strain of laminated rubber
$\gamma_{ m b}$	shear strain at break of laminated rubber
$\gamma_{\rm c}$	local shear strain due to compressive force of laminated rubber
$\gamma_{\rm r}$	local shear strain due to rotation of laminated rubber
$\gamma_{ m u}$	ultimate shear strain of laminated rubber
$\delta_{ m H}$	horizontal offset of isolator
$\delta_{ m v}$	difference in isolator height measured between two points at opposite extremes of the isolator
ε	compressive strain of laminated rubber
$\varepsilon_{\mathrm{cr}}$	creep strain
ζ	ratio of total height of rubber and steel layers to total rubber height
θ	rotation angle of isolator about the diameter of a circular bearing or about an axis through a square bearing
λ	correction factor for calculation of stress in reinforcing steel plates
η	correction factor for calculation of critical stress
К	correction factor for apparent Young's modulus according to hardness
Σγ	total local shear strain
$ ho_R$	safety factor for roll-out
σ	compressive stress in isolator
σ_0	design compressive stress
σ_B	tensile stress in bolt

https:/

Table 1 (continued)

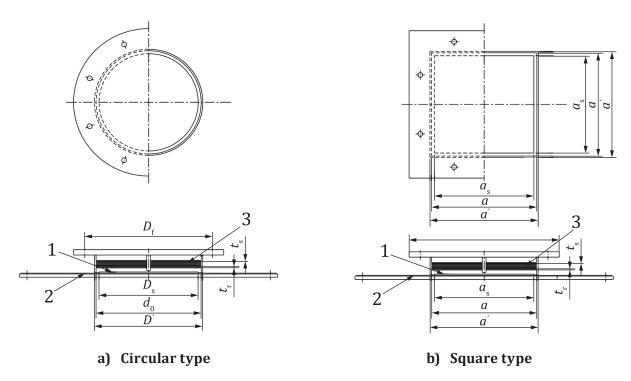
Symbol	Description
$\sigma_{ m b}$	bending stress in flange
$\sigma_{ m bf}$	allowable bending stress in steel
$\sigma_{ m cr}$	critical stress in isolator
$\sigma_{ m f}$	allowable tensile stress in steel
$\sigma_{ m max}$	maximum compressive stress
$\sigma_{ m min}$	minimum compressive stress
$\sigma_{ m nom}$	nominal long-term compressive stress recommended by manufacturer for building
σ_r	compressive stress in laminated rubber
$\sigma_{_{ m S}}$	tensile stress in reinforcing steel plate
$\sigma_{ m sa}$	allowable tensile stress in steel plate
$\sigma_{ m sm}$	compressive stress in sliding material
$\sigma_{ m sm0}$	design compressive stress in sliding material
$\sigma_{ m sm,max}$	maximum compressive stress in sliding material
$\sigma_{ m sm,min}$	minimum compressive stress in sliding material
$\sigma_{ m sm,nom}$	for building: nominal long-term compressive stress in sliding material recommended by manufacturer
$\sigma_{ m sy}$	yield stress of steel for flanges and reinforcing steel plates
$\sigma_{ m su}$	tensile strength of steel for flanges and reinforcing steel plates
$t_{ m b}$	shear stress in bolt
$ au_f$	allowable shear stress in steel \$1200 200 500 500 500 500 500 500 500 500
φ	factor for computation of buckling stability
ξ	factor for computation of critical stress
μ	friction coefficient

ISO 22762-5:2021

$\textbf{5}^{\text{htt}} \textbf{Classification}^{\text{h.ai/catalog/standards/iso/5cdccc41-246a-4244-b907-3357d002c060/iso-22762-5-2021}$

5.1 Isolator types

Sliding isolators are classified by performance, sliding friction coefficient and shape.


5.2 Classification by sliding friction coefficient

Sliding isolators are classified as the following three types by sliding friction coefficient:

- low-friction sliding isolator: μ < 0,015;
- intermediate-friction sliding isolator: 0,015 ≤ μ < 0,09;
- high-friction sliding isolator: $0.09 \le \mu$.

5.3 Cross-section of isolator

A typical cross-section of the isolator is given in Figure 1.

Elastomeric sliding isolator

Figure 1 — Cross-section of isolator

ISO 22762-5:2021

https://standards.iteh.ai/catalog/standards/iso/5cdccc41-246a-4244-b907-3357d002c060/iso-22762-5-2021

6 Requirements

6.1 General

Sliding isolators for buildings and the materials used in manufacture shall meet the requirements specified in this clause. For test items (see <u>Table 2</u>) that have no specific required values, the manufacturer shall define the values and inform the purchaser prior to production.

The standard temperature for determining the properties of elastomeric isolators is 23 °C or 27 °C in accordance with prevailing International Standards. However, it is advisable to establish a range of working temperatures taking into consideration actual environmental temperatures and possible changes in temperatures at the work site where the elastomeric isolators are installed.

NOTE Some of these properties can be determined using one of the standard test pieces detailed in <u>Table 3</u> and <u>Table 4</u>. The standard test piece is used for non-specific product testing, such as testing for the development of new materials and products.

Table 2 — Test pieces for type testing of elastic sliding bearings

Dyonautica	Test item	Test piece			
Properties	rest item	Scale	Minimum number		
Compressive properties	Compressive properties Compressive stiffness		3		
Ch	Shear stiffness	Eull and aude	2		
Shear properties	Friction coefficient	Full-scale only	3		
	Compressive stress dependency	Full-scale only	3		
	Velocity dependency	Scale A, STD-S	3		
Dependency of shear properties	Repeated loading dependency	Scale A	3		
propercies	Temperature dependency	Scale A, STD-R, SBS	3		
	Vertical loading time dependency	Scale A, STD-S	2		
Dependency of compressive properties	Compressive stress dependency	Scale B	3		
Illtimata muanantias	Ultimate horizontal displacement	Scale B	3		
Ultimate properties	Ultimate compressive load	Scale B	3		
Dunahility	Ageing	Scale A, STD-R, SBS	2		
Durability	Creep	Scale A	2		

Scale A: Scaling such that, for a circular bearing, diameter of reinforcing steel plates \geq 150 mm, for a square bearing, side length reinforcing steel plates \geq 100 mm and, for both types, rubber layer thickness \geq 1,5 mm and thickness of reinforcing steel plates \geq 0,5 mm.

Scale B: Scaling such that, for a circular bearing, diameter reinforcing steel plates \geq 400 mm, for a square bearing, side length reinforcing steel plates \geq 400 mm and, for both types, rubber layer thickness \geq 1,5 mm and thickness of reinforcing steel plates \geq 0,5 mm. Minimum scale factor 0.5.

STD-S = standard test piece for sliding material and sliding plate (see Table 3).

STD-R = standard test piece for laminated rubber (see Table 4).

SBS = shear-block test piece specified in ISO 22762-1:2018, 5.8.3.

Table 3 — Standard test piece for sliding material and sliding plate 60/150-22762-5-2021

Item		Circle			Square			
Sliding material outer diameter, mm	D_s	150	250	400	_	_	_	
Sliding material side length, mm	$a_s \times a_s$	_	_	_	100 × 100	240 × 240	400 × 400	
Protruding length of sliding material, mm	t _{sm} a	1 to 4	1 to 4	1 to 4	1 to 4	1 to 4	1 to 4	
Sliding plate side length, mm	$a_{sp} \times a_{sp}$	400 × 400	650 × 650	1 200 × 1 200	400 × 400	650 × 650	1 200 × 1 200	

NOTE Size of sliding plate should be decided by considering a displacement amplitude in the test.

Table 4 — Standard test piece for laminated rubber

Item	Circle			Square			
Reinforcing steel plate outer diameter, mm	d_0	150	250	400	_	_	_
Reinforcing steel plate side length, mm	a × a	_	_	_	100 × 100	240 × 240	400 × 400
Reinforcing steel plate inner diameter, mm	d_i	7,5	12,5	25	7,5	12,5	25

 $t_{\rm sm}$ is apparent thickness (see Figure 2).