

SLOVENSKI STANDARD kSIST-TP FprCEN ISO/ASTM TR 52952:2023

01-april-2023

Aditivna proizvodnja kovin - Surovine - Korelacija med meritvami rotirajočega bobna in raztresljivostjo prahu v strojih za PBF-LB (ISO/ASTM DTR 52952:2023)

Additive Manufacturing of metals - Feedstock materials - Correlating of rotating drum measurement with powder spreadability in PBF-LB machines (ISO/ASTM DTR 52952:2023)

iTeh STANDARD PREVIEW

Additive Fertigung von Metallen - Ausgangsmaterialien - Korrelation zwischen der Messung der rotierenden Trommel und der Pulververteilbarkeit in PBF-LB-Maschinen (ISO/ASTM DTR 52952:2023)

ST-TP FprCEN ISO/ASTM TR 52952:2023

Fabrication additive de métaux - Matières premières - Corrélation de la mesure du tambour rotatif avec la capacité d'étalement de la poudre dans les machines PBF-LB (ISO/ASTM DTR 52952:2023)

Ta slovenski standard je istoveten z: FprCEN ISO/ASTM TR 52952

ICS:

25.030 3D-tiskanje

Additive manufacturing

kSIST-TP FprCEN ISO/ASTM TR 52952:2023

en,fr,de

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>kSIST-TP FprCEN ISO/ASTM TR 52952:2023</u> https://standards.iteh.ai/catalog/standards/sist/170e1dad-b79c-4070-ad00-4e6b55a92d43/ksist-tp-fprcen-iso-astm-tr-52952-2023 FINAL DRAFT

TECHNICAL REPORT

ISO/ASTM DTR 52952

ISO/TC 261

Secretariat: **DIN**

Voting begins on: **2023-02-17**

Voting terminates on: 2023-05-12

Additive manufacturing of metals — Feedstock materials — Correlating of rotating drum measurement with powder spreadability in PBF-LB machines

Fabrication additive de métaux — Matières premières — Corrélation de la mesure du tambour rotatif avec la capacité d'étalement de la poudre dans les machines PBF-LB

<u>kSIST-TP FprCEN ISO/ASTM TR 52952:2023</u> https://standards.iteh.ai/catalog/standards/sist/170e1dad-b79c-4070-ad00-4e6b55a92d43/ksist-tp-fprcen-iso-astm-tr-52952-2023

RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT, WITH THEIR COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE AND TO PROVIDE SUPPORTING DOCUMENTATION.

IN ADDITION TO THEIR EVALUATION AS BEING ACCEPTABLE FOR INDUSTRIAL, TECHNO-LOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT INTERNATIONAL STANDARDS MAY ON OCCASION HAVE TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL TO BECOME STAN-DARDS TO WHICH REFERENCE MAY BE MADE IN NATIONAL REGULATIONS.

Reference number ISO/ASTM DTR 52952:2023(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>kSIST-TP FprCEN ISO/ASTM TR 52952:2023</u> https://standards.iteh.ai/catalog/standards/sist/170e1dad-b79c-4070-ad00-4e6b55a92d43/ksist-tp-fprcen-iso-astm-tr-52952-2023

COPYRIGHT PROTECTED DOCUMENT

© ISO/ASTM International 2023

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. In the United States, such requests should be sent to ASTM International.

ASTM International

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11

Email: copyright@iso.org Website: <u>www.iso.org</u> Published in Switzerland 100 Barr Harbor Drive, PO Box C700 West Conshohocken, PA 19428-2959, USA Phone: +610 832 9634 Fax: +610 832 9635 Email: khooper@astm.org Website: www.astm.org

Contents

Forev	word	iv
Intro	duction	v
1	Scope	1
2	Normative references	
3	Terms and definitions	
4	Designation	
5	Methodology5.1General principle5.2Powder selection5.3Layer homogeneity evaluation5.4Rotating drum	2 2 3 3
6	Results and discussion 6.1 Spreadability 6.2 Rotating drum analysis 6.2.1 Experimental protocol 6.2.2 Experimental results 6.3 Discussion	5 7 7 7
7	Conclusions	.11
8	Additional data	.12
9	Perspectives (standards.iteh.ai)	.13
Bibli	ography	.14

https://standards.iteh.ai/catalog/standards/sist/170e1dad-b79c-4070-ad00-4e6b55a92d43/ksist-tp-fprcen-iso-astm-tr-52952-2023

ISO/ASTM DTR 52952:2023(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 261, *Additive manufacturing*, in cooperation with ASTM Committee F42, *Additive Manufacturing Technologies*, on the basis of a partnership agreement between ISO and ASTM International with the aim to create a common set of ISO/ASTM standards on additive manufacturing, and in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 438, *Additive manufacturing*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

Introduction

Granular materials and fine powders are widely used in industrial applications. To support control and optimize processing methods, these materials have to be precisely characterized. Characterization methods are related either to the properties of the grains (granulometry, morphology, chemical composition, etc.) or to the behaviour of the bulk powder (flowability, density, blend stability, electrostatic properties, etc.). The complex behaviours of granular and powder materials have motivated the development of numerous techniques to obtain reproducible and interpretable results. Many industries are concerned in different fields: additive manufacturing, food processing, pharmaceuticals, bulk material handling. This document is focused on Additive Manufacturing (AM).

Metallic powders are widely used in AM processes involving powder bed fusion (PBF-LB/M PBF-EB/M etc.) or binder jetting. During such operations, successive thin layers of powder are created with a blade or with a rotating cylinder. Each layer is then fused (most commonly melted) by an energy beam or joined by an adhesive binder to build the parts. The layer thickness defines the vertical resolution of the process; a thin layer leads to a better resolution. In order to obtain a thin layer, the powder is as fine as possible. However, if it is assumed that among the cohesive forces, the Van der Waal forces are predominant, it can be stated that as the grain size decreases, cohesiveness typically increases^[25]. This increase in cohesiveness could have a impact on the spreadability of a powder.

The quality of the parts built with AM is thus directly influenced by powder flow properties.

According to ISO/ASTM 52900, spreadability is the ability of a feedstock material to be spread out in layers that fulfil the requirements for the AM process; this includes the ability to form a strictly flat powder-atmosphere interface without waves and irregularities.

Visual observation of layer homogeneity is usually the only way for operators to assess the spreadability of powders during the spreading of new layers. However, linking the powder characteristics to its spreadability during the layer deposition beforehand can provide a more cost-effective way to classify and select the optimal powder and layer deposition speed combinations.

https://standards.iteh.ai/catalog/standards/sist/170e1dad-b79c-4070-ad00-4e6b55a92d43/ksist-tp-fprcen-iso-astm-tr-52952-2023

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>kSIST-TP FprCEN ISO/ASTM TR 52952:2023</u> https://standards.iteh.ai/catalog/standards/sist/170e1dad-b79c-4070-ad00-4e6b55a92d43/ksist-tp-fprcen-iso-astm-tr-52952-2023

TECHNICAL REPORT

Additive manufacturing of metals — Feedstock materials — Correlating of rotating drum measurement with powder spreadability in PBF-LB machines

1 Scope

This document provides an example of the relation between the characterization of certain macroscopic properties of metallic powders and their spreadability in an PBF-LB/M AM machines.

This relation is based on a new technique combining measurements inside an PBF-LB/M machine and image processing developed to quantify the homogeneity of the powder bed layers during spreading.

In this document, the flowability of five metal powders are investigated with an automated rotating drum method, whose dynamic cohesive index measurement is shown to establish a correlation with the spreadability of the powder during the layer deposition operation. Furthemore, the particule size distribution (PSD) and morphology of each powder is characterized before testing by static image analysis method (according to ISO 13322-1).

The general principle of the method is described in <u>Figure 1</u>.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/ASTM 52900, Additive manufacturing — General principles — Fundamentals and vocabulary

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/ASTM 52900 and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at <u>https://www.electropedia.org/</u>

3.1

cohesiveness

physical powder behaviour relating to the degree to which the attractive forces between particles exceed the average particle mass

Note 1 to entry: cohesive powders is qualified as systems where the attractive force between particles exceed the average particle mass

3.2 powder flowability ability of a solid bulk material to flow

Note 1 to entry: powder flowability is a function of multiple factors, and particularly powder size and distribution, see also ISO/ASTM 52907.

ISO/ASTM DTR 52952:2023(E)

4 Designation

In this document, five powders described in <u>Table 1</u> are used:

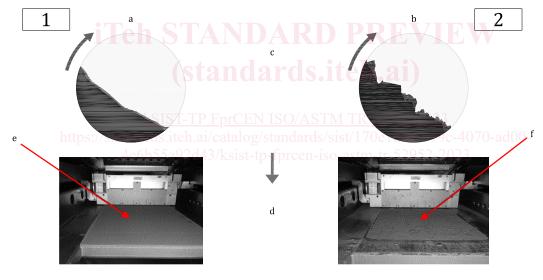

Common designation	European spefication	Denomination used in this document
Scalmalloy®	AlMgSc	AlMgSc_Std
Inconel®	NiCr ₂₂ Mo ₉ Nb	NiCr ₂₂ Mo ₉ Nb_Std
AlSi ₇ Mg	AlSi ₇ Mg	AlSi7Mg_Std
Titanium Fine	Ti ₆ Al ₄ V	Ti ₆ Al ₄ V_Fine
Inconel® Fine	NiCr ₂₂ Mo ₉ Nb	NiCr ₂₂ Mo ₉ Nb_Fine

Table 1 — Designation of powders

5 Methodology

5.1 General principle

The general principle for comparing rotating drum measurements with powder spreading in a PBF-LB AM machine is described in Figure 1.

Key

- 1 AlSi₇Mg
- 2 NiCr₂₂Mo₉Nb (inconel fine)
- a Good.
- ^b Bad.
- c Rotating drum.
- d PBF-LM printer.
- e Regular layer.
- f Irregular layer.

Figure 1 — General principle of comparing rotating drum measurements with powder spreading in a PBF-LB AM machine

5.2 Powder selection

The recoating performance of the powders inside a PBF-LB AM machine is evaluated experimentally with *in situ* observation of layer homogeneity. Five metallic powders are selected for this study: two Nickel alloys (NiCr₂₂Mo₉Nb_Std and NiCr₂₂Mo₉Nb_Fine), two Aluminium alloys (AlSi₇Mg_Std and AlMgSc_Std) and one Titanium alloy (Ti₆Al₄V_Fine). Particle size distribution (PSD) is summarized in Table 2 and shape and morphology in Table 3.

Powder	D10	D90	
I owuci	μm	μm	
NiCr ₂₂ Mo ₉ Nb_Fine	6	27	
NiCr ₂₂ Mo ₉ Nb_Std	17	45	
AlSi7Mg_Std	27	69	
AlMgSc_Std	26	66	
Ti ₆ Al ₄ V_Fine	7	28	

Table 2 — Summary of the PSD (D10 and D90) of the five powders (volume)

Table 3 — Shape and morphology comparison

Aspect ratio comparison								
	Mean	P10	P50	P90				
Aspect ratio (number)	A K µm P K	μmE	μm	μm				
AlMgSc_Std	79,7	62,5	81,6	93,8				
AlSi ₇ Mg	76,6	58,4	78,7	91,8				
NiCr ₂₂ Mo ₉ Nb_Std	81,9	63,5	85,3	94,6				
NiCr ₂₂ Mo ₉ Nb_Fine <u>kSIST-TP FprCEN I</u>	SD/AS81,8TR 5	2952 63,53	85,8	93,3				
Ti ₆ Al ₄ V_Fine ^{tps://standards.iteh.ai/catalog/st}	ar dards79,7/170	eldad60,9 ⁹ c-40	70-a 82,9	92,8				
4e6b55a92d43/ksistBluntness comparison-52952-2023								
Bluntness (number)	Mean	P10	P50	P90				
Diantiness (number)	μm	μm	μm	μm				
AlMgSc_Std	74,6	54,0	74,6	95,1				
AlSi ₇ Mg	75,5	57,1	75,5	93,8				
NiCr ₂₂ Mo ₉ Nb_Std	84,3	67,9	86,7	97,2				
NiCr ₂₂ Mo ₉ Nb_Fine	88,0	76,5	89,9	97,1				
Ti ₆ Al ₄ V_Fine	85,0	70,2	87,4	96,5				

Successive powder layers are produced in the PBF-LB AM machine with no laser melting. Between each layer deposition, a picture of the powder layer is taken by a camera placed inside the AM machine. The pictures are then processed numerically to evaluate the layer homogeneity. Three powder spreading speeds are investigated: 30, 80 and 160 mm/s to highlight their influence on the layer quality.

5.3 Layer homogeneity evaluation

The powder layer surface homogeneity is experimentally evaluated using a camera placed orthogonal to the powder bed. After each powder spreading operation, a picture is taken. For this experiment, the focus is made on metallic coater and 30 μ m layer thickness only. For the same recoater speed, 15 layers are created and therefore, 15 pictures are taken as well. This methodology provides a quantitative and operator independent way to quantify the layer topography homogeneity.