

SLOVENSKI STANDARD oSIST prEN IEC 62282-3-202:2024

01-april-2024

Tehnologije gorivnih celic - 3-202. del: Nepremični elektroenergetski sistemi z gorivnimi celicami - Metode za preskušanje učinkovitosti za majhne energetske sisteme z gorivnimi celicami, ki jih je mogoče dopolniti z dodatnim generatorjem toplote za delovanje več enot s sistemom za upravljanje energije

Fuel cell technologies - Part 3-202: Stationary fuel cell power systems - Performance test methods for small fuel cell power systems that can be complemented with a supplementary heat generator for multiple units operation by an energy management system

(https://standards.iteh.ai) Document Preview

oSIST prEN IEC 62282-3-202:2024

https://sta Ta slovenski standard je istoveten z: 4-33 prEN IEC 62282-3-202:2024 tepten-iec-62282-3-202-2024

en

ICS:

27.070 Gorilne celice

Fuel cells

oSIST prEN IEC 62282-3-202:2024

oSIST prEN IEC 62282-3-202:2024

iTeh Standards (https://standards.iteh.ai) Document Preview

<u>oSIST prEN IEC 62282-3-202:2024</u> https://standards.iteh.ai/catalog/standards/sist/1cb8d274-3351-457f-a80a-2fc4e6976d33/osist-pren-iec-62282-3-202-2024

105/1020/CDV

COMMITTEE DRAFT FOR VOTE (CDV)

PROJECT NUMBER:	
IEC 62282-3-202 ED1	
DATE OF CIRCULATION:	CLOSING DATE FOR VOTING:
2024-02-02	2024-04-26
SUPERSEDES DOCUMENTS:	
105/961/CD. 105/990A/CC	

TC 105 : FUEL CELL TECHNOLOGIES	
SECRETARIAT:	SECRETARY:
Germany	Mr David Urmann
OF INTEREST TO THE FOLLOWING COMMITTEES:	PROPOSED HORIZONTAL STANDARD
TC 8, TC 57, TC 120, SyC Smart Energy	Other TC/SCs are requested to indicate their interest, if any, in this CDV to the secretary.
FUNCTIONS CONCERNED:	
EMC ENVIRONMENT	QUALITY ASSURANCE SAFETY
SUBMITTED FOR CENELEC PARALLEL VOTING	NOT SUBMITTED FOR CENELEC PARALLEL VOTING
Attention IEC-CENELEC parallel voting The attention of IEC National Committees, members of CENELEC, is drawn to the fact that this Committee Draft for Vote (CDV) is submitted for parallel voting.	andards dards.iteh.ai)
The CENELEC members are invited to vote through the CENELEC online voting system.	nt Preview

This document is still under study and subject to change. It should not be used for reference purposes.

Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Recipients of this document are invited to submit, with their comments, notification of any relevant "In Some Countries" clauses to be included should this proposal proceed. Recipients are reminded that the CDV stage is the final stage for submitting ISC clauses. (See AC/22/2007 or NEW GUIDANCE DOC).

TITLE:

Fuel cell technologies – Part 3-202: Stationary fuel cell power systems – Performance test methods for small fuel cell power systems that can be complemented with a supplementary heat generator for multiple units operation by an energy management system

PROPOSED STABILITY DATE: 2027

NOTE FROM TC/SC OFFICERS:

Copyright © **2023 International Electrotechnical Commission, IEC**. All rights reserved. It is permitted to download this electronic file, to make a copy and to print out the content for the sole purpose of preparing National Committee positions. You may not copy or "mirror" the file or printed version of the document, or any part of it, for any other purpose without permission in writing from IEC.

CONTENTS

CONTENTS	1
FOREWORD	4
INTRODUCTION	6
1 Scope	7
2 Normative references	7
3 Terms and definitions	7
4 Symbols	
5 Configuration of small stationary fuel cell power system	
6 Reference conditions	
7 Heating value base	
8 Test preparation	
8.1 General	
8.2 Uncertainty analysis	
8.3 Data acquisition plan	
9 Test set-up	
10 Instruments and measurement methods	
10.1 General	
10.2 Measurement instruments	
10.3 Measurement points.	17
10.4 Minimum required measurement systematic tolerance	19
11 Test conditions	
11.1 Laboratory conditions	19
11.2 Installation and operating conditions of the system	
11.3 Test fuel	
12 Parameter list	20
12.1 Electrical characteristics for fuel cell power system	
12.1.1 Power generation electrical efficiency (Rated, Partial load)	
12.1.2 Start-up, Shut-down energy	
12.1.3 Ramp-up rate and ramp-down rate between rated and minimum load12.1.4 Waiting time for restart (Hot restart)	
12.2 Thermal characteristics for fuel cell power system	
12.2.1 Heat recovery efficiency	
12.2.2 Full heat storage amount of hot water tank	
12.2.3 Remaining hot storage amount of hot water tank	
12.2.4 Heat insulating performance of hot water tank	20
12.2.5 Heat recovery temperature	
12.2.6 Pressure drop characteristics from feed water inlet to hot water outlet	
13 Test methods	
13.1 Electrical characteristics for fuel cell power system	
13.1.1 Power generation electrical efficiency (Rated, Partial load)	
13.1.2 Start-up, Shut-down energy	
13.1.3 Ramp-up rate and ramp-down rate between rated and minimum load13.1.4 Waiting time for restart (Hot restart)	

IEC CDV 62282-3-202 © IEC 2023 - 3 -

13.2 Thermal characteristics for fuel cell power system	32
13.2.1 Heat recovery test	32
13.2.2 Full heat storage amount of hot water tank	34
13.2.3 Remaining heat storage amount of hot water tank	35
13.2.4 Heat insulating performance of hot water tank	36
13.2.5 Heat recovery temperature	36
13.2.6 Pressure drop characteristics from feed water inlet to hot water outlet	36
14 Test reports	37
14.1 General	37
14.2 Title page	37
14.3 Table of contents	37
14.4 Summary report	37
Annex A (normative) Heating values for components of natural gases	38
Annex B (informative) Examples of nominal composition for natural gas and propane	
gas	40
Annex C (informative) Guidelines for the contents of detailed and full reports	42
C.1 General	42
C.2 Detailed report	42
C.3 Full report	42
Annex D (informative) Pressure drop characteristics from feed water inlet to hot water	
outlet	
Bibliography	44
Tien Stanuarus	
Figure 1 – Configuration of a fuel cell power system that can be complemented with a supplementary heat generator or thermal storage system covered by this document	14
Figure 2 – Test set-up for small stationary fuel cell power system fed with gaseous fuel which supplies electricity and useful heat	16
Figure 3 – Test set-up for small stationary fuel cell power system fed with gaseous fuel which supplies only electricity	
Figure 4 – Example of electric power chart during start-up time	25
Figure 5 – Example of liquid fuel supply systems	
Figure 6 – Electric power chart during shutdown time	
Figure 7 – Electric power output change pattern for ramp-up and ramp-down rate test	
r = r = r = r = r = r = r = r = r = r =	

Figure 7 – Electric power output change pattern for ramp-up and ramp-down rate test	30
Figure 8 – Example for electric power change stabilization criteria	30
Figure 9 – Explanation of temperature sensor locations and V_j	35
Figure D.1 – Example for the pressure drop characteristics from feed water inlet to hot water outlet	43

.11
38
40
41

INTERNATIONAL ELECTROTECHNICAL COMMISSION

FUEL CELL TECHNOLOGIES -

Part 3-202: Stationary fuel cell power systems – Performance test methods for small fuel cell power systems that can be complemented with a supplementary heat generator for multiple units operation by an energy management system

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication. 24
- https://stanc7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and 82-3-202-202 members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
 - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
 - 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 62282-3-202 has been prepared by IEC technical committee 105: Fuel cell technologies. It is an International Standard.

The text of this International Standard is based on the following documents:

Draft	Report on voting
105/XX/FDIS	105/XX/RVD

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available

IEC CDV 62282-3-202 © IEC 2023 - 5 -

at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/standardsdev/publications.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

reconfirmed,

withdrawn,

replaced by a revised edition, or amended.

iTeh Standards (https://standards.iteh.ai) Document Preview

<u>oSIST prEN IEC 62282-3-202:2024</u> https://standards.iteh.ai/catalog/standards/sist/1cb8d274-3351-457f-a80a-2fc4e6976d33/osist-pren-iec-62282-3-202-202

IEC CDV 62282-3-202 © IEC 2023

INTRODUCTION

- 6 -

2 This part of IEC 62282 provides consistent and repeatable test methods for the electrical 3 thermal and environmental performance of small stationary fuel cell power systems.

This document limits its scope to small stationary fuel cell power systems (electric power output below 10 kW) and provides test methods specifically designed for them in detail. It is based on IEC 62282-3-201.

- 7 For multiple units operation, each electric power output of the unit is limited to below 10kW.
- 8 This document is intended for manufacturers of small stationary fuel cell power systems and/or 9 those who evaluate the performance of their systems for certification purposes.
- Users of this document may selectively execute test items that are suitable for their purposes
 from those described in this document. This document is not intended to exclude any other
 methods.
- 13 This document describes type tests and their test methods only, in this document, no routine
- tests are required or identified, and no performance targets are set.

15

1

iTeh Standards (https://standards.iteh.ai) Document Preview

<u>oSIST prEN IEC 62282-3-202:2024</u> https://standards.iteh.ai/catalog/standards/sist/1cb8d274-3351-457f-a80a-2fc4e6976d33/osist-pren-iec-62282-3-202-202

IEC CDV 62282-3-202 © IEC 2023 - 7 -

16 FUEL CELL TECHNOLOGIES – 17 18 18 Part 3-202: Stationary fuel cell power systems – 19 Performance test methods for small fuel cell power systems that can be complemented with a supplementary heat generator for multiple units 20 operation by an energy management system

23

24 Scope

This document provides performance test methods specialized for the thermal and electrical characteristics which are required by an energy management system to effectively share the heat and power of networked small stationary fuel cell power systems. These test methods are applied for each small stationary fuel cell power system. This document covers small stationary fuel cell power systems which can be complimented with a supplementary heat generator and/or a thermal storage system such as:

- output: rated electric power output of less than 10 kW for each system;
- output mode: grid-connected/independent operation or stand-alone operation with alternating
 current (AC) output not exceeding 240 V or direct current (DC) output;
- operating pressure: maximum allowable working pressure of less than 0.1 MPa (G) for the fuel
 and oxidant passages;
- fuel: Gaseous fuel (natural gas, liquefied petroleum gas, propane, butane, hydrogen) or liquid fuel (kerosene, methanol);
- 38 oxidant: air.
- This document does not apply to small stationary fuel cell power systems with electricity storage other than (small scale) back-up power for safety, monitoring and control.

Note: Regarding data linkage for conducting performance tests specified in this document with operating management systems (Energy Management System) of multiple Fuel Cell Power System (mFCPS), an appropriate IEC standard is recommended to select and implement. The related standards are IEC 61850-7-420, IEC 61850-90-27, IEC 62394 Ed4.0, IEC 62746-10-1, IEC 62746-10-3 Ed.1, etc. The data linkage and implementation for realizing the functions of the system that monitors mFCPS and peripherals differ depending on the vendor of the mFCPS

46 control system, so the methods for data linkage and implementation are not specified in this document.

47 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any

51 amendments) applies.

⁵² IEC 62282-3-200:2015, Fuel cell technologies – Part 3-200: Stationary fuel cell power systems ⁵³ – Performance test methods

54 **Terms and definitions**

55 For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following
 addresses:

- 58 IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

105/1020/CDV

IEC CDV 62282-3-202 © IEC 2023 - 8 -

60 61 62 63	cold state state of a fuel cell power system at ambient temperature with no power input or output, ready for start-up
64	[SOURCE: IEC 60050-485:2020, 485-21-01, modified — "ready for start-up" added.]
65 66 67 68	electrical efficiency ratio of the average net electric power output produced by a fuel cell power system to the average fuel power input supplied to the fuel cell power system
69	Note 1 to entry: The lower heating value (LHV) is assumed unless otherwise stated
70 71 72	[SOURCE: IEC 60050-485:2020, 485-10-02, modified — "electrical" instead of "electric" in the term; "average net electric power output" instead of "net electric power"; "average fuel power input" instead of "total enthalpy flow".]
73 74 75	electric energy input integrated value of electric power input at the electric input terminal
76	[SOURCE: IEC 62282-3-201:2021, 3.8]
77 78 79	electric energy output integrated value of electric power output at the electric output terminal
80	[SOURCE: IEC 62282-3-201:2021, 3.9]
81 82 83	electric power input electric power input at the electric input terminal of the fuel cell power system
84	[SOURCE: IEC 62282-3-201:2021, 3.10] ent Preview
85 86 87 //stan	electric power output electric power output at the electric output terminal of the fuel cell power system
88	[SOURCE: IEC 62282-3-201:2021, 3.11]
89 90 91	fuel cell power system generator system that uses one or more fuel cell modules to generate electric power and heat
92	[SOURCE: IEC 60050-485:2020, 485-09-01]
93 94 95 96 97	fuel input amount of natural gas, hydrogen, methanol, liquid petroleum gas, propane, butane, or other material containing chemical energy entering the fuel cell power system while it is working at the specified operating conditions
98	[SOURCE: IEC 62282-3-201:2021, 3.13]
99 100 101	fuel power input fuel energy input per unit of time
102	[SOURCE: IEC 62282-3-201:2021, 3.14]

IEC CDV 62282-3-202 © IEC 2023 - 9 -

1(1(03 04 05 06	heat recovery efficiency ratio of the average recovered thermal power output of a fuel cell power system to the average total power input supplied to the fuel cell power system
1(07 08 09	[SOURCE: IEC 60050-485:2020, 485-10-04, modified — "the average recovered thermal power output" instead of "recovered heat flow"; "average total power input" instead of "total enthalpy flow"; Note 1 to entry deleted.]
1 [.] 1 [.]	10 11 12 13	heat recovery fluid fluid circulating between the fuel cell power system and a heat sink for recovering the thermal energy output
1	14	[SOURCE: IEC 62282-3-201:2021, 3.16]
1 [.] 1 [.]	15 16 17 18	hot restart start operation of the fuel cell power system before the power system temperature condition reach the "cold state"
1: 1:	19 20 21 22	inert purge gas inert gas or dilution gas, not containing chemical energy, supplied to the fuel cell power system during specific conditions to make it ready for operation or shutdown
12	23	Note 1 to entry: Dilution gas containing chemical energy shall be considered as fuel.
12	24	[SOURCE: IEC 62282-3-201:2021, 3.17]
1: 1:	25 26 27 28	integrated fuel input volume or mass of fuel consumed by the fuel cell power system under specified operating conditions
12	29	[SOURCE: IEC 62282-3-201:2021, 3.18]
ps:// 1;	30 31 32 33	interface point measurement point at the boundary of a fuel cell power system at which material or energy, or both, either enters or leaves
1:	34 35 36	Note 1 to entry: This boundary is intentionally selected to accurately measure the performance of the system, including all normal operation, both steady state and transient. If necessary, the boundary or the interface points of the fuel cell power system (Figure 1) to be assessed should be determined by agreement between the parties.
	37 38	Note 2 to entry: Typical conditions to be standardized refer to fuel and oxidant parameters, like compositions, flow rates, temperature, pressure and humidity, as well as to the fuel cell parameters, like temperature.
1:	39	[SOURCE: IEC 60050-485:2020, 485-09-12]
14 14	40 41 42 43	minimum electric power output minimum net power output, at which a fuel cell power system is able to operate continuously at a steady state
14	44	[SOURCE: IEC 62282-3-201:2021, 3.21]
14	45 46 47	net electric power output power generated by the fuel cell power system and available for external use
	48 49	[SOURCE: IEC 60050-485:2020, 485-14-03, modified — "output" added to the term, Notes 1 and 2 to entry deleted.]

IEC CDV 62282-3-202 © IEC 2023 - 10 -

150

rated electric power output 151

- maximum continuous electric power output that a fuel cell power system is designed to achieve 152 under normal operating conditions specified by the manufacturer 153
- [SOURCE: IEC 60050-485:2020, 485-14-04, modified "electric" and "output" added to the 154 term, Note 1 to entry deleted.] 155
- 156

ramp-up energy 157

- electric and/or chemical (fuel) energy required for transitioning from zero or minimum net 158 electric power output to rated net electric power output 159
- [SOURCE: IEC 62282-3-201:2021, 3.28, modified "zero or minimum" instead of "positive"; 160 "after start-up" deleted.] 161
- 162

163 ramp-up time

- 164 duration required for transitioning from zero or minimum net electric power output to rated net 165 electric power output
- [SOURCE: IEC 62282-3-201:2021, 3.29, modified "zero or minimum" instead of "positive"; 166 "after start-up" deleted.] 167
- 168

ramp-down energy 169

- electric and/or chemical (fuel) energy required for transitioning from rated net electric power 170 171
 - output to minimum or zero net electric power output
- 172 173

176

ramp-down time

duration required for transitioning from rated net electric power output to minimum or zero net 174 175 electric power output

recovered heat 177

thermal energy that has been recovered for useful purpose 12.2024 178

Note 1 to entry: The recovered heat is measured by determining the temperatures and flow rates of the heat recovery 82-3-202-202 179 180 fluid (water, steam, air or oil, etc.) entering and leaving the thermal energy recovery subsystem at the interface point of the fuel cell power system. 181

- [SOURCE: IEC 62282-3-201:2021, 3.30] 182
- 183

184 recovered thermal power

- recovered heat per unit of time 185
- [SOURCE: IEC 62282-3-201:2021, 3.31] 186
- 187

shutdown energy 188

- sum of electric and/or chemical (fuel) energy required during the shutdown time 189
- [SOURCE: IEC 62282-3-201:2021, 3.32] 190

191

shutdown time 192

- duration between the instant when a shutdown action is initiated at rated electric power output 193
- and the instant when the cold state or storage state, as specified by the manufacturer, is 194

attained 195