INTERNATIONAL STANDARD

ISO 23446

First edition

Marine technology — Product water quality of seawater reverse osmosis (RO) desalination — Guidelines for municipal water supply

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/PRF 23446 https://standards.iteh.ai/catalog/standards/sist/b3d3f24d-4268-4ed4-b625-de4ef37602a4/iso-prf-23446

PROOF/ÉPREUVE

Reference number ISO 23446:2021(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/PRF 23446 https://standards.iteh.ai/catalog/standards/sist/b3d3f24d-4268-4ed4-b625-de4ef37602a4/iso-prf-23446

COPYRIGHT PROTECTED DOCUMENT

© ISO 2021

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Con	Contents	
Forev	iv on v pe 1 mative references 1 ms and definitions 1 mated water quality 1 duct water quality 1 mitoring frequency 2 t methods 2 mformative) Calculation method of calcium hardness 3 mformative) Calculation method of the Langelier saturation index (LSI) 4 mformative) Information of product water quality of seawater RO desalination	
Intro	duction	v
1		
2	Normative references	1
3	Terms and definitions	1
4	Desalted water quality	1
5	Product water quality	1
6	Monitoring frequency	2
7	Test methods	2
Anne	x A (informative) Calculation method of calcium hardness	3
Anne	x B (informative) Calculation method of the Langelier saturation index (LSI)	4
Anne	ex C (informative) Information of product water quality of seawater RO desalination in specific cases	5
Rihlia	ogranhy	6

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/PRF 23446 https://standards.iteh.ai/catalog/standards/sist/b3d3f24d-4268-4ed4-b625-de4ef37602a4/iso-prf-23446

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2. www.iso.org/directives

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received. www.iso.org/patents

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html. (Standards.iteh.ai)

This document was prepared by Technical Committee ISO/TC 8, Ships and marine technology, Subcommittee SC 13, Marine technology. ISO/PRF 23446 https://standards.iteh.ai/catalog/standards/sist/b3d3f24d-4268-4ed4-b625-

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

V

Introduction

With population growth, urbanization, climate change impacts and increases in household and industrial uses, fresh water scarcity will definitely affect the sustainable development of society. Seawater desalination is an effective way to meet the water needs. In some regions, it is almost the primary source of municipal water supply.

Because of technology and cost advantages, the reverse osmosis (RO) process has been used increasingly for seawater desalination. However, desalted water of seawater RO desalination is low in minerals and poorly buffered. It is usually aggressive to metallic materials used in equipment and distribution pipelines. To solve this problem, the post-treatment of desalted water, such as the addition of minerals and/or blending of waters, is necessary to achieve a balanced mineral content. Therefore, it is necessary to monitor product water quality after post-treatment to confirm the safety for municipal water supply.

Consequently, standardization of the product water quality is important and useful for the protection of corrosive pipelines and related equipment. The key parameters are monitored to meet the related limits and range. The product water will be compatible with municipal pipelines and related equipment.

These guidelines provide key parameters to manage the product water quality of seawater RO desalination for municipal water supply. They are intended to assist water engineers, authorities, decision makers and stakeholders in evaluating the compatibility of product water with pipelines and devices.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/PRF 23446 https://standards.iteh.ai/catalog/standards/sist/b3d3f24d-4268-4ed4-b625-de4ef37602a4/iso-prf-23446

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/PRF 23446 https://standards.iteh.ai/catalog/standards/sist/b3d3f24d-4268-4ed4-b625-de4ef37602a4/iso-prf-23446

1

Marine technology — Product water quality of seawater reverse osmosis (RO) desalination — Guidelines for municipal water supply

1 Scope

This document provides guidelines for product water quality of seawater reverse osmosis (RO) desalination that is used for municipal water supply.

It specifies water quality parameters and ranges, monitoring frequency and test methods to ensure the compatibility of the product water with the pipelines.

2 Normative references

There are no normative references in this document.

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia available at https://www.electr/bpedia.org68-4ed4-b625-

3.1

desalted water

freshwater produced by seawater reverse osmosis desalination plants

3.2

product water

water produced by post-treatment of desalted water (3.1), such as mineralization and waters blending

4 Desalted water quality

The total dissolved solids (TDS) of desalted water should be as given in Table 1.

Table 1 — TDS limits of desalted water produced by different RO desalination processes

Desalted water of RO process	TDS
	mg/l
Single pass RO	≤ 500
Double pass RO	≤ 100

5 Product water quality

The parameters and range of product water quality should be as given in <u>Table 2</u>. For specific cases, see <u>Annex C</u>, <u>Table C.1</u>. For additional water quality parameters and ranges, see Reference [6] or local regulations.

Table 2 — Parameters and range of product water quality

Parameter	Range
рН	7,5 to 8,5
Calcium hardness (H _[Ca])	60 ≤ H _[Ca] ≤ 120
(As CaCO ₃)/(mg/l)	
Total alkalinity	≥ 50
(As CaCO ₃)/(mg/l)	
Langelier saturation index (LSI)	$-0.5 \le LSI \le 0.5$

6 Monitoring frequency

The monitoring frequency of water quality parameters should be as given in <u>Table 3</u>. For specific cases, see <u>Annex C</u>, <u>Table C.2</u>.

Table 3 — Monitoring frequency of water quality parameters

Item	Parameter	Monitoring frequency
Desalted water	Electrical conductivity	≥ 1 (per day)
quality	TDS	≥ 1 (per month)
	рН	≥ 1 (per day)
iT	en S Temperature RD F	RL ≥1 (per day)
D 1	Electrical conductivity	≥ 1 (per day)
Product water quality	Calcium hardness	≥ 1 (per week)
quarry	Total alkalinity _{r 23446}	≥ 1 (per week)
https://sta	ndards.iteh.ai/cat TIDS /standards/sist/b3	d3f24d- ≥ 26 (perimonth)
	de4qf 3 7602a4/iso-prf-23	$446 \ge 1 \text{ (per month)}$

7 Test methods

The suitable test methods for desalted water quality and product water quality are as follows.

- a) The pH should be determined in accordance with ISO 10523.
- b) The electrical conductivity should be determined in accordance with ISO 7888.
- c) Calcium should be determined in accordance with ISO/TS 15923-2, and calcium hardness calculation should be in accordance with $\underline{\text{Annex A}}$.
- d) Total alkalinity should be determined in accordance with ISO 9963-1.
- e) TDS should be determined in accordance with EN 15216-2007.
- f) The LSI should be determined in accordance with Annex B.
- g) The accuracy of temperature measurement instrumentation should be \pm 0,5 °C.

Annex A

(informative)

Calculation method of calcium hardness

The calcium hardness should be calculated using the following formula:

$$H_{[Ca]} = \frac{\left[Ca^{2+}\right]}{M_{Ca}} \times 100,09$$

where

 $H_{[Ca]}$ is the calcium hardness (as CaCO₃), mg/l;

 $\left[\text{Ca}^{2+} \right]$ is the calcium ion concentration, mg/l;

 M_{Ca} is the molar mass of calcium ($M_{\text{Ca}} = 40,08$).

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/PRF 23446

https://standards.iteh.ai/catalog/standards/sist/b3d3f24d-4268-4ed4-b625-de4ef37602a4/iso-prf-23446

Annex B

(informative)

Calculation method of the Langelier saturation index (LSI)

The LSI is commonly used to determine the scaling tendency of CaCO₃, and the calculation is as follows:

$$LSI = pH - pH_s$$

where

LSI is the Langelier saturation index;

pH is the measured pH value of the water;

 pH_s is the pH value of the water when the $CaCO_3$ is in the equilibrium state at saturated.

When LSI>0, $CaCO_3$ tends to precipitate. When LSI=0, $CaCO_3$ is kept in the equilibrium state at saturated. When LSI<0, $CaCO_3$ tends to dissolve.

The pH_s is calculated as follows Teh STANDARD PREVIEW

$$pH_s = (9,3+A+B)-(C+D)$$

(standards.iteh.ai)

$$A = \frac{\log_{10}[TDS]-1}{10}$$

ISO/PRF 23446

https://standards.iteh.ai/catalog/standards/sist/b3d3f24d-4268-4ed4-b625-de4ef37602a4/iso-prf-23446

$$B = 34,55 - 13,2 \times \log_{10}(t + 273)$$

$$C = \log_{10} \left[Ca^{2+} \right] - 0.4$$

$$D = log_{10}[Alk]$$

where

A is the total dissolved solids constant;

[TDS] is the concentration of total dissolved solids in concentrate, mg/l;

B is the temperature constant;

t is the product water temperature before entering the municipal pipelines. The temperature could be the average value of measured temperature during one week;

C is the calcium hardness constant;

 $\lceil \text{Ca}^{2+} \rceil$ is the concentration of calcium ion in concentrate(As CaCO $_3$), mg/l;

D is the total alkalinity constant;

[Alk] is the total alkalinity (As CaCO₃), mg/l.