INTERNATIONAL STANDARD

First edition 1994-12-15

Iron ores — Determination of total iron content —

Part 1: iTeh STittimetric method after tin(II) chloride (reductionds.iteh.ai)

ISO 2597-1:1994

https://standards.itdMinerals_de_ferrds/siDosage5du_fer_totab_9b2b-Partie 1: Methode titrimetrique après réduction au chlorure d'étain(II)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting. VIEW a vote.

International Standard ISO 2597-1 was prepared by Technical Committee ISO/TC 102, *Iron ores*, Subcommittee SC 2, *Chemical analysis*.

This first edition of ISO 2597^b Pcancels and replaces ISO¹ 2597^s 1985,1576-8841-4df5-9b2bwhich it constitutes a technical revision. 689c63c12ad3/iso-2597-1-1994

ISO 2597 consists of the following parts, under the general title *lron* ores — Determination of total iron content:

- Part 1: Titrimetric method after tin(II) chloride reduction

— Part 2: Titanium(III) chloride reduction methods

Parts 2 and 3 will cancel and replace ISO 9507:1990 and ISO 9508:1990, respectively.

Annex A forms an integral part of this part of ISO 2597. Annexes B and C are for information only.

© ISO 1994

Printed in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization

Case Postale 56 • CH-1211 Genève 20 • Switzerland

Iron ores — Determination of total iron content —

Part 1:

Titrimetric method after tin(II) chloride reduction

1 Scope

ISO 385-1:1984, Laboratory glassware — Burettes — Part 1: General requirements.

This part of ISO 2597 specifies a titrimetric method for the determination of the total iron content of iron ores using potassium dichromate after reduction of the trivalent iron by tin(II) chloride. ISO 648:1977, Laboratory glassware — One-mark ISO 1042:1983, Laboratory glassware — One-mark

The method is applicable to total iron contents be **CS. Wolfmetric** flasks. tween 30 % (*m/m*) and 72 % (*m/m*) in natural iron ores, iron ore concentrates and agglomerates, including 7-1:1945 O 2596:1994, Iron ores — Determination of

iron ore concentrates and agglomerates, including 7-1:1943 0 2596.1994, iron ores — Determination of sinter products. https://standards.iteh.ai/catalog/standards/sist/ygroscopic41 moisture_ in analytical samples — 689c63c12ad3/iso-259 Gravingetric and Karl Fischer methods.

NOTE 1 Equivalent International Standards that do not use mercury(II) chloride are ISO 9507:1990, *Iron ores* — *Determination of total iron content* — *Titanium(III) chloride reduction methods*, and ISO 9508:1990, *Iron ores* — *Determination of total iron content* — *Silver reduction titrimetric method*.

A suggested procedure for removal of mercury from the waste solutions before discharge to effluent drains is given in annex C.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this part of ISO 2597. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this part of ISO 2597 are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards. Science and Karl Fischer methods.

Manual method.

ISO 3082:1987, Iron ores — Increment sampling and sample preparation — Mechanical method.

ISO 3083:1986, Iron ores — Preparation of samples — Manual method.

ISO 3696:1987, Water for analytical laboratory use — Specification and test methods.

ISO 7764:1985, Iron ores — Preparation of predried test samples for chemical analysis.

3 Principle

Decomposition of the test portion.

a) For samples containing not more than 0,05 % (*m/m*) vanadium, 0,1 % (*m/m*) molybdenum or 0,1 % (*m/m*) copper: treatment with hydrochloric acid, the residue being filtered off and ignited, treatment with hydrofluoric and sulfuric acids to remove silica, and fusion with potassium pyrosulfate.

Dissolution of the melt in hydrochloric acid, precipitation of iron with ammonia solution, redissolution of the precipitate in hydrochloric acid and addition of this solution to the main solution.

b) For samples containing more than 0,05 % (m/m) vanadium: fusion with alkali, the melt being leached with water and filtered, the filtrate being dicarded. Dissolution of the residue in hydrochloric acid.

Reduction of trivalent iron in the solution, using tin(II) chloride. Oxidation of excess reductant with mercury(II) chloride.

Titration of the reduced iron with potassium dichromate solution, using sodium diphenylaminesulfonate as indicator.

4 Reagents

During the analysis, use only reagents of recognized Dissolve 100 g of crystalline tin(II) chloride dihydrate analytical grade, and only water that complies with (SnCl₂·2H₂O) in 200 ml of hydrochloric acid (4.1) by grade 2 of ISO 3696. (standarcheating the solution in a water bath.

Hydrochloric acid, ρ 1,16 g/ml to 1,19 g/ml. 4.1 Cool the solution and dilute to 1 litre with water.

4.2 Hydrochloric acid, ρ 1,16 g/ml to 1,19 g/ml states it all states and a state of the sta Store this solution in a brown glass bottle with the addition of a small quantity of granular or mossy tin luted 1 + 1.

4.3 Hydrochloric acid, ρ 1,16 g/ml to 1,19 g/ml, diluted 1 + 2.

4.4 Hydrochloric acid, ρ 1,16 g/ml to 1,19 g/ml, diluted 1 + 10.

4.5 Hydrochloric acid, ρ 1,16 g/ml to 1,19 g/ml, diluted 1 + 50.

4.6 Sulfuric acid, ρ 1,84 g/ml.

Sulfuric acid, ρ 1,84 g/ml, diluted 1 + 1. 4.7

4.8 Hydrofluoric acid, ρ 1,13 g/ml [40 % (*m/m*)], or ρ 1,19 g/ml [48 % (m/m)].

4.9 Orthophosphoric acid, ρ 1,7 g/ml.

4.10 Ammonia solution, ρ 0,90 g/ml.

4.11 Sodium carbonate (Na_2CO_3) , anhydrous powder.

Heat for 30 min at 500 °C, or confirm that the water

content is not more than 1 % (m/m) (by heating a test portion for 30 min at 500 °C and measuring the loss in mass).

4.12 Sodium peroxide (Na₂O₂), dry powder.

Store this reagent in a dry environment and do not use it after it has begun to agglomerate.

4.13 Potassium pyrosulfate (K₂S₂O₇), fine powder.

4.14 Sulfuric acid-orthophosphoric acid mixture.

Cautiously pour 150 ml of sulfuric acid (4.6) into about 300 ml of water while stirring, cool in a water bath or running water, add 150 ml of orthophosphoric acid (4.9) and dilute to 1 litre with water.

4.15 Sodium hydroxide, 20 g/l solution.

4.16 Tin(II) chloride, 100 g/l solution.

metal.

NOTE 2 The tin(II) chloride solution may be prepared in 250 ml lots.

4.17 Mercury(II) chloride (HgCl₂), 50 g/l solution.

4.18 Potassium permanganate (KMnO₄), 30 g/l solution.

4.19 Iron standard solution, 0,1 mol/l.

Weigh, to the nearest 0,002 g, 5,58 g of pure iron [minimum purity 99,9 % (m/m)] into a 500 ml conical flask and place a small filter funnel in the neck. Add 75 ml of hydrochloric acid (4.2) in small increments and heat until the iron is dissolved. Cool and oxidize with 5 ml of hydrogen peroxide [30 % (V/V)] added in small portions. Heat to boiling and boil to decompose the excess hydrogen peroxide and to remove chlorine. Transfer to a 1 000 ml one-mark volumetric flask, dilute to volume with water and mix.

1,00 ml of this solution is equivalent to 1,00 ml of potassium dichromate standard volumetric solution.

4.20 Potassium dichromate, standard volumetric solution, $c(K_2Cr_2O_7) = 0,016$ 67 mol/l.

Pulverize about 6 g of potassium dichromate standard reagent [minimum purity 99,9 % (*m/m*)] in an agate mortar, dry in an air bath at 140 °C to 150 °C for 2 h, and cool to room temperature in a desiccator. Dissolve 4,904 g of this dried and pulverized potassium dichromate in water and dilute the solution to exactly 1 000 ml.

Record on the stock bottle the temperature at which this dilution was made (t_i) .

4.21 Sodium diphenylaminesulfonate, solution.

Dissolve 0,2 g of powdered sodium diphenylamine-sulfonate ($C_6H_5NHC_6H_4SO_3Na$) in a small volume of water and dilute to 100 ml.

Store this solution in a brown glass bottle.

5 Apparatus

indicated), and

Ordinary laboratory apparatuse including burettes RD processed ores in which the content of one-mark pipettes and one-mark volumetric flasks complying with the specifications of asociast-including burettes of asociast-including burettes and one-mark volumetric flasks complying with the specifications of asociast-including burettes of asociast-including burettes and one-mark volumetric flasks complying with the specifications of asociast-including burettes and one-mark volumetric flasks or as a social complexity of a social complexity of the specification of a social complexity of the specification of the specif

ISO 2597-1:1992) natural or processed ores in which the sulfur https://standards.iteh.ai/catalog/standards/sist/76econtents-is-higherbthan 0,2 % (m/m).

5.1 Zirconium, vitreous carbon or **alkali**-resistant^{iso-2597-1-1994} sintered alumina crucibles, of capacity 25 ml to **6.2.2 C** 30 ml.

5.2 Platinum crucibles, of capacity 25 ml to 30 ml.

5.3 Porcelain crucibles, of capacity 25 ml to 30 ml.

5.4 Weighing spatula, of non-magnetic material or demagnetized stainless steel.

5.5 Muffle furnace, capable of being maintained at between 500 °C \pm 10 °C and 800 °C \pm 10 °C.

6 Sampling and samples

6.1 Laboratory sample

For analysis, use a laboratory sample of minus 100 μ m particle size which has been taken in accordance with ISO 3081 or ISO 3082 and prepared in accordance with ISO 3082 or ISO 3083. In the case of ores having significant contents of combined water or oxidizable compounds, use a particle size of minus 160 μ m.

NOTES

3 A guideline on significant contents of combined water and oxidizable compounds is incorporated in ISO 7764.

4 If the determination of total iron relates to a reducibility test, prepare the laboratory sample by crushing and pulverizing, to less than 100 μ m particle size, the whole of one of the reducibility test portions which has been reserved for chemical analysis. In the case of ores having significant contents of combined water or oxidizable compounds, use a particle size of minus 160 μ m.

6.2 Preparation of test samples

Depending on the ore type, proceed in accordance with either 6.2.1 or 6.2.2.

6.2.1 Ores having significant contents of combined water or oxidizable compounds

Prepare an air-equilibrated test sample, in accordance with ISO 2596, with the following types of ores:

6.2.2 Ores outside the scope of 6.2.1

Prepare a predried test sample as follows.

Thoroughly mix the laboratory sample and, taking multiple increments, extract a test sample in such a way that it is representative of the whole contents of the container. Dry the test sample at 105 °C \pm 2 °C, as specified in ISO 7764. (This is the predried test sample.)

7 Procedure

7.1 Number of determinations

Carry out the analysis at least in duplicate in accordance with annex A, independently, on one test sample (6.2).

NOTE 5 The expression "independently" means that the second and any subsequent result is not affected by the previous result(s). For this particular analytical method, this condition implies that the repetition of the procedure is carried out either by the same operator at a different time or by a different operator, including appropriate recalibration in either case.

7.2 Test portion

Taking several increments, weigh, to the nearest 0,000 2 g, approximately 0,4 g of the test sample (6.2) using the non-magnetic spatula (5.4).

NOTES

6 For samples of iron content higher than 68 % (m/m), weigh approximately 0,38 g.

7 If predried test samples are used, the test portion should be taken and weighed quickly on the day of predrying, to avoid reabsorption of moisture.

7.3 Determination of hygroscopic moisture content

Where the ore type conforms to the specifications of 6.2.1, determine the hygroscopic moisture content in accordance with ISO 2596, simultaneously with the taking of the test portion (7.2) for the determination of iron content.

7.4 Blank test and check test

In each run, one blank test and side analysis of acerg/standa tified reference material of the same type of ore shall be carried out in parallel with the analysis of the ore sample(s) under the same conditions. A test sample of the certified reference material shall be prepared in a manner appropriate to the type of ore involved (see 6.2).

NOTES

8 The certified reference material should be of the same type as the sample to be analysed, and the properties of the two materials should be sufficiently similar to ensure that, in either case, no significant changes in the analytical procedure will become necessary.

9 The certified reference material is used only to validate the performance of the analytical procedure and expressly not to standardize the potassium dichromate solution.

Where the analysis is carried out on several samples at the same time, the blank value may be represented by one test, provided that the procedure is the same and the reagents used are from the same reagent bottles.

Where the analysis is carried out on several samples of the same type of ore at the same time, the analytical value of one certified reference material may be used.

7.5 Determination

7.5.1 Decomposition of the test portion

7.5.1.1 Acid decomposition [for samples containnot more than 0,05 % (*m/m*) vanadium. ina 0,1 % (*m/m*) molybdenum or 0,1 % (*m/m*) copper]

Place the test portion (7.2) in a 300 ml beaker, add 30 ml of hydrochloric acid (4.1), cover the beaker with a watch glass, and heat the solution in the low temperature zone (about 80 °C) of a hotplate for about 1 h. Transfer to a higher temperature zone and heat just below boiling for about 10 min or until the ore is substantially decomposed. (See notes 10 and 11.)

Wash the watch glass and dilute the solution to about 50 ml with warm water. Filter the insoluble residue on a close-texture paper and wash with warm hydrochloric acid (4.5) until the yellow colour of iron(III) chloride is no longer observed. Then wash it six to eight times with warm water. Collect the filtrate and washings in a 600 ml beaker and concentrate to iTeh STANDA about 30 ml by heating without boiling. (This is the main solution.)

(standards.iteh.ai) Place the filter paper and the residue in a platinum crucible (5.2), dry, char the paper and finally ignite at 750 °C to 800 °C. Allow the crucible to cool. Moisten

the residue in the crucible with sulfuric acid (4.7), add about 5 ml of hydrofluoric acid (4.8), and heat gently to remove silica and sulfuric acid.

Add 2 g of potassium pyrosulfate (4.13) to the contents of the cooled crucible and heat gently at first and then more strongly, minimizing any tendency for the flux to creep, until a clear melt is obtained. Allow the melt to cool, place the platinum crucible in a 300 ml beaker, add about 100 ml of warm water and about 5 ml of hydrochloric acid (4.1), and heat gently to dissolve the melt. Rinse and remove the platinum crucible from the beaker.

Adjust this solution to slight alkalinity by the addition of ammonia solution (4.10), boil the solution for a few minutes and remove it from the source of heat.

When the precipitate has settled, collect the precipitate of iron hydroxide on a rapid filter paper, and wash six to eight times with warm water. Discard the filtrate and washings.

Place the beaker containing the main solution under the funnel and dissolve the precipitate on the filter paper by pouring 10 ml of hydrochloric acid (4.3) over it; wash the filter, first six to eight times with warm hydrochloric acid (4.5), then twice with hot water, and follow the procedure specified in 7.5.2.

NOTES

10 For samples that are difficult to decompose with hydrochloric acid alone, tin(II) chloride may be used as follows.

Decompose the test portion as much as possible by treatment with hydrochloric acid according to the procedure described in 7.5.1.1, first sentence, then add 10 ml of tin(II) chloride solution (4.16) and heat in the low temperature zone of the hotplate until the yellow colour of iron(III) chloride appears in the solution. Again add a small excess of tin(II) chloride solution (4.16) and continue the heating. If necessary, repeat the addition of tin(II) chloride solution (4.16) until the test portion is completely decomposed. Add potassium permanganate solution (4.18), drop by drop, to oxidize the excess of tin(II) chloride and restore the yellow colour of iron(III) chloride. Proceed as specified in 7.5.1.1, second sentence.

11 Samples that are more easily decomposed by roasting should be processed as follows.

Place the test portion (7.2) in a porcelain crucible (5.3), cover with the lid and roast at 700 °C to 750 °C for about 30 min. Allow the crucible to cool, and transfer the test portion, as far as possible in solid form, into a 300 ml beaker. Dissolve the remainder in the crucible in hydrochloric acid (4.1) and transfer the solution to the beaker. Add hydrochloric acid (4.1) up to a total volume of 30 ml, and proceed as specified in 7.5.1.1 and subsequent subclauses.

several times with warm hydrochloric acid (4.5), and finally with warm water until the washings are no longer acid. Combine the solution and washings in the 500 ml beaker, evaporate this solution, without boiling, to about 30 ml and follow the procedure specified in 7.5.2.

7.5.2 Reduction

PREVIEW

Heat the solution, now containing all the iron, to just below the boiling point and add 3 to 5 drops of potassium permanganate solution (4.18). Maintain at this temperature for 5 min to oxidize any arsenic and organic matter, and evaporate to about 30 ml. Wash the cover and inside wall of the beaker with a small amount of hot hydrochloric acid (4.4). Immediately add tin(II) chloride solution (4.16), drop by drop, while swirling the solution in the beaker. When the yellow colour of the iron(III) chloride has disappeared, add an additional drop of the tin(II) chloride solution (4.16) and cool the solution in a water cooler. Add, all at once, 8 ml of mercury(II) chloride solution (4.17), mix gently, and allow the solution to stand for 5 min.

7.5.3 Titration ten.ai Dilute the solution to about 300 ml with cold water, add 30 ml of sulfuric acid-orthophosphoric acid mix-ISO 2597-1:19 ture (4,14), and titrate with potassium dichromate

7.5.1.2 Fusion acidification [for samples containingards/si 689c63c12ad3/iso-25 more than 0,05 % (m/m) vanadium]

Place the test portion (7.2) in an alkali-resistant crucible (5.1), add about 4 g of fusion mixture [1+2 mixture of sodium carbonate (4.11) and sodium peroxide (4.12)], mix thoroughly and place in the muffle furnace (5.5) maintained at 500 °C \pm 10 °C for 30 min. Remove from the furnace, heat over a burner to melt the sinter within 30 s and, swirling gently, continue heating to allow a total heating time of 2 min. Allow the melt to cool, then place the crucible in a 300 ml beaker, add about 100 ml of warm water, and boil for a few minutes to leach the melt. Take out the crucible, wash it with warm water and reserve it. Cool the solution and filter through a filter paper of dense texture. Wash the filter twice with sodium hydroxide solution (4.15) and discard the filtrate and washings.

Transfer the precipitate on the filter into the original beaker by washing with water, add 10 ml of hydrochloric acid (4.1), and warm to dissolve the precipitate. Dissolve the remaining precipitate in the reserved crucible with hot hydrochloric acid (4.2) and wash the crucible with hot water, transferring the solution and crucible washings to the original beaker. Place a 500 ml beaker under the filter and wash the filter three times with warm hydrochloric acid (4.3),

standard volumetric solution (4.20), using 5 drops of sodium diphenylaminesulfonate solution (4.21) as indicator. The endpoint is obtained when the green colour of the solution changes to bluish green and a final drop of the titrant imparts a violet colour.

NOTE 12 The ambient temperature (t_2) of the potassium dichromate solution should be noted. If this differs by more than 1 °C from the temperature at which it was prepared (t_1) , make a volumetric correction such as that given in ISO 4787:1984, Laboratory glassware --- Volumetric glassware - Methods for use and testing of capacity. For example, the titre should be decreased if the ambient temperature during the titration is higher than the temperature during preparation of the standard volumetric solution. A correction for the temperature difference, if any, is essential.

7.5.4 Blank test

Determine the blank test value (7.4), using the same amounts of all reagents and following all the steps of the procedure. Immediately before reduction (7.5.2) with tin(II) chloride solution (4.16), add 1,00 ml of iron standard solution (4.19) with a one-mark pipette and titrate the solution as described in 7.5.3. Record the volume of this titration (V_0) . The blank test value of this titration (V_2) is calculated using $V_2 = V_0 - 1,00$.

NOTES

where

13 The 1 ml one-mark pipette should be calibrated beforehand by weighing the mass of water delivered and converting to volume.

14 In the absence of iron, the diphenylaminesulfonate indicator does not react with the potassium dichromate solution. The addition of the iron solution is therefore necessary to promote indicator response in the blank solution and thus allow a suitable correction for the blank, in terms of its equivalent in millilitres of potassium dichromate standard volumetric solution.

Expression of results 8

8.1 Calculation of total iron content

The total iron content, w_{Fe} , as a percentage by mass (see note 15), is calculated using the equation

$$w_{\rm Fe} = \frac{(V_1 - V_2) \left[1 - (t_2 - t_1) \times 0,000 \ 2\right]}{m} \times \qquad \qquad \sigma_1 = 0,178$$

$$\times 0,005 584 7 \times 100 \times \text{Kreh STA} (\text{VDARR}_{d} = 0,235) \text{VFW} \qquad \dots (6)$$

(stanuarus.iten.ai)

 V_1 is the volume, in millilitres, of potassium dichromate standard volumetric solutionSO 2597-1:1994 (4.20) used for the determinations.itch.ai/catalog/standards/sigt/76is1the-independentbduplicate standard devi-689c63c12ad3/iso-2597-1ation4;

- V_2 is the volume, in millilitres, of potassium dichromate standard volumetric solution (4.20) used for the blank test, corrected for the addition of iron solution:
- is the temperature, in degrees Celsius, at t_1 which the potassium dichromate solution was prepared;
- is the temperature, in degrees Celsius, at t_2 which the potassium dichromate solution was used;
- is the mass, in grams, of the test portion m (7.2);
- is 1,00 for predried test samples (6.2.2), and K for air-equilibrated test samples (6.2.1) is the conversion factor found from the equation

$$K = \frac{100}{100 - A}$$
 ... (2)

where A is the hygroscopic moisture content, as a percentage by mass, determined in accordance with ISO 2596.

NOTE 15 The atomic mass of iron A_r (Fe) should be verified by inserting the final test result into the equation

$$A_{\rm r}({\rm Fe}) = \frac{w_{\rm Fe} \times 100 \ m}{K(V_1 - V_2) \left[1 - (t_2 - t_1) \times 0,000 \ 2\right]} \qquad \dots (3)$$

If the difference between the theoretical atomic mass of iron (55,847) and the calculated value is greater than 0,01, the reason for the discrepancy should be examined and the test result should be amended accordingly. If a discrepancy cannot be identified, the test result should be rejected and the determination repeated.

8.2 General treatment of results

8.2.1 Repeatability and permissible tolerance

The precision of this analytical method is expressed by the following equations¹:

$$_{d} = 0,084$$
 ... (4)

 σ_1 is the between-laboratories standard deviation:

- is the independent duplicate limit; $R_{\rm d}$
- Р is the permissible tolerance between laboratories.

8.2.2 Determination of analytical result

After computing the independent duplicate results according to equation (1), compare them with the independent duplicate limit (R_d) , using the procedure described in annex A.

8.2.3 Between-laboratories precision

The between-laboratories precision is used to determine the agreement between the final results reported by two laboratories. The assumption is that both laboratories followed the procedure described in 8.2.2.

¹⁾ Additional information is given in annex B.

Compute the following quantity:

$$\mu_{12} = \frac{\mu_1 + \mu_2}{2} \qquad \dots (8)$$

where

is the final result reported by laboratory 1; μ_1

is the final result reported by laboratory 2; μ_2

 μ_{12} is the mean of the final results.

If $|\mu_1 - \mu_2| \leq P$, the final results are in agreement.

8.2.4 Check for trueness

The trueness of the analytical method shall be checked by applying it to a certified reference material (CRM) or a reference material (RM). The procedure is the same as that described above. After confirmation of the precision, the final laboratory result is compared with the reference or certified value A. There are two possibilites:

- a) $|\mu_{
 m c}-A_{
 m c}|\leqslant C$ in which case the difference between the reported result and the ISrefep7-1:1994 ence/certified valuelispstatisticallyinisignificant and ards/sist/76ec55is6 disearded and the figure in the second deci-
- b) $|\mu_{c} A_{c}| > C$ in which case the difference between the reported result and the reference/certified value is statistically significant.

where

- is the final result for the certified reference $\mu_{\rm c}$ material:
- is the certified value for the CRM or the ref- $A_{\rm c}$ erence value for the RM;
- С is a value dependent on the type of CRM or RM used.

NOTE 16 Certified reference materials used for this purpose should be prepared and certified in accordance with ISO Guide 35:1985, Certification of reference materials -General and statistical principles.

For a CRM certified by an inter-laboratory test programme

$$C = 2\left[\sigma_{\rm L}^2 + \frac{\sigma_{\rm d}^2}{n} + V(A_{\rm c})\right]^{1/2}$$

where $V(A_c)$ is the variance of the certified value A_c .

For a CRM certified by only one laboratory

$$C = 2\left[\sigma_{\rm L}^2 + \frac{\sigma_{\rm d}^2}{n}\right]^{1/2}$$

NOTE 17 This type of CRM should be avoided unless it is known to have an unbiased certified value.

8.2.5 Calculation of final result

The final result is the arithmetic mean of the acceptable analytical values for the test sample, or as otherwise determined by the operations specified in annex A, calculated to the fourth decimal place and rounded off to the second decimal place as follows:

- a) where the figure in the third decimal place is less than 5, it is discarded and the figure in the second decimal place is kept unchanged:
- b) where the figure in the third decimal place is 5 and there is a figure other than 0 in the fourth decimal place, or where the figure in the third decimal place is greater than 5, the figure in the (standards.iteh.al) decimal place is increased by one;

c) where the figure in the third decimal place is 5 and the figure 0 is in the fourth decimal place, the 689c63c12ad3/iso-2597-1-1mal place is kept unchanged if it is 0, 2, 4, 6 or 8

and is increased by one if it is 1, 3, 5, 7 or 9.

8.3 Oxide factors

$$w_{\text{Fe}_2\text{O}_3}(\%) = 1,430 \ w_{\text{Fe}}(\%)$$

 $w_{\text{FeO}}(\%) = 1,286 \ w_{\text{Fe}}(\%)$
 $w_{\text{Fe}_3\text{O}_4}(\%) = 1,382 \ w_{\text{Fe}}(\%)$

9 Test report

The test report shall include the following information:

- name and address of the testing laboratory; a)
- b) date of issue of the test report;
- reference to this part of ISO 2597; C)
- details necessary for the identification of the d) sample;