

Designation: D2950/D2950M - 10

Standard Test Method for Density of Bituminous Concrete in Place by Nuclear Methods¹

This standard is issued under the fixed designation D2950/D2950M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1. Scope

1.1 This test method describes a test procedure for determining the density of bituminous concrete by the attenuation of gamma radiation, where the source and detector(s) remain on the surface (Backscatter Method) or the source or detector is placed at a known depth up to 300 mm [12 in.] while the detector or source remains on the surface (Direct Transmission Method).

1.2 The density, in mass per unit volume of the material under test, is determined by comparing the detected rate of gamma emissions with previously established calibration data.

- 1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.
- 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific warning statements see Section 6 and Note 4.

2. Referenced Documents

2.1 ASTM Standards:²

C670 Practice for Preparing Precision and Bias Statements for Test Methods for Construction Materials

D1188 Test Method for Bulk Specific Gravity and Density of Compacted Bituminous Mixtures Using Coated Samples

D1559 Test Method for Resistance of Plastic Flow of

¹ This test method is under the jurisdiction of ASTM Committee D04 on Road and Paving Materials and is the direct responsibility of Subcommittee D04.21 on Specific Gravity and Density of Bituminous Mixtures.

Bituminous Mixtures Using Marshall Apparatus³
D2041 Test Method for Theoretical Maximum Specific Gravity and Density of Bituminous Paving Mixtures
D2726 Test Method for Bulk Specific Gravity and Density of Non-Absorptive Compacted Bituminous Mixtures
D3665 Practice for Random Sampling of Construction Materials

3. Significance and Use

- 3.1 The test method described is useful as a rapid, nondestructive technique for determining the in-place density of compacted bituminous mixtures.
- 3.2 With proper calibration and confirmation testing, the test method is suitable for quality control and acceptance testing of compacted bituminous concrete.
- 3.3 The test method can be used to establish the proper rolling effort and pattern to achieve the required density.
- 3.4 The non-destructive nature of the test allows repetitive measurements to be made at a single test location between roller passes and to monitor changes in density.
- 3.5 The density results obtained by this test method are relative. Correlation with other test methods such as D1188 or D2726 are required to convert the results obtained using this method to actual density. It is recommended that at least seven core densities and seven nuclear densities be used to establish a conversion factor. A new factor must be established at any time a change is made in the paving mixture or in the construction process.

4. Interferences

- 4.1 The chemical composition of the material being tested may significantly affect the measurement and adjustments may be necessary. Certain elements with atomic numbers greater than 20 may cause erroneously high test values.
- 4.2 The test method exhibits spatial bias in that the instrument is most sensitive to the density of the material in closest proximity to the nuclear source.
- 4.2.1 When measuring the density of an overlay, it may be necessary to employ a correction factor if the underlying

Current edition approved Dec. 1, 2010. Published December 2010. Originally approved in 1971. Last previous edition approved in 2009 as D2950 – 09. DOI: 10.1520/D2950_D2950M-10.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

³ Withdrawn. The last approved version of this historical standard is referenced on www.astm.org.

material varies in thickness, mineral composition or degree of consolidation at different points within the project. (See Annex A3.)

- 4.2.2 The surface roughness of the material being tested may cause lower than actual density determination.
- 4.3 Oversize aggregate particles in the source-detector path may cause higher than actual density determination.
- 4.4 The sample volume being tested is approximately $0.0028~\text{m}^3$ [0.0989 ft³] for the Backscatter Method and $0.0056~\text{m}^3$ [0.198 ft³] for the Direct Transmission Method. The actual sample volume varies with the apparatus and the density of the material. In general, the higher the density the smaller the volume (Note 1).

Note 1—The volume of field compacted material represented by a test can be effectively increased by repeating the test at adjacent locations and averaging the results.

4.5 If samples of the measured material are to be taken for purposes of correlation with other test methods such as D1188 or D2726, the volume measured can be approximated by a 200 mm [8 in.] diameter cylinder located directly under the center line of the radioactive source and detector(s). The height of the cylinder to be excavated will be the depth setting of the source rod when using the Direct Transmission Method or approximately 75 mm [3 in.] when using the Backscatter Method (Note 2).

Note 2—If the layer of bituminous concrete to be measured is less than the depth of measurement of the instrument, corrections must be made to the measurements to obtain accurate results due to the influence of the density of the underlying material. (See Annex A3. for the method used.)

5. Apparatus

- 5.1 *Nuclear Device*—An electronic counting instrument, capable of being seated on the surface of the material under test, and which contains:
- 5.1.1 *Gamma Source*—A sealed high energy gamma source such as cesium or radium, and
- 5.1.2 *Gamma Detector*—Any type of gamma detector such as a Geiger-Mueller tube(s).
- 5.2 *Reference Standard*—A block of dense material used for checking instrument operation and to establish conditions for a reproducible reference-count rate.
- 5.3 Site Preparation Device—A metal plate, straightedge, or other suitable leveling tool which may be used to level the test site to the required smoothness using fine sand or similar material.
- 5.4 *Drive Pin*—A steel rod of slightly larger diameter than the rod in the Direct Transmission Instrument, to prepare a perpendicular hole in the material under test for inserting the rod. A drill may also be used.

6. Hazards

- 6.1 This equipment utilizes radioactive materials which may be hazardous to the health of the users unless proper precautions are taken. Users of this equipment must become familiar with applicable safety procedures and government regulations.
- 6.2 Effective user instructions together with routine safety procedures, such as source leak tests, recording and evaluation

of film badge data, etc. are a recommended part of the operational guidelines for the use of this instrument.

6.3 A regulatory agency radioactive materials license may be required to possess this equipment.

7. Calibration

7.1 Calibrate the instrument in accordance with Annex A1. at least once each year. Adjust the calibrations as necessary in accordance with Annex A2.

8. Standardization and Reference Check

- 8.1 Nuclear test devices are subject to long-term aging of the radioactive source, detectors, and electronic systems, which may change the relationship between count rate and material density. To offset this aging, the apparatus may be standardized as the ratio of the measured count rate to a count rate made on a reference standard. The reference count rate should be of the same order of magnitude as the measured count rate over the useful density range of the apparatus.
- 8.2 Standardization of equipment should be performed at the start of each day's work, and a permanent record of this data retained.
- 8.2.1 Perform the standardization with the apparatus located at least 8 m [25 ft] away from other sources of radioactivity and clear of large masses or other items which may affect the reference count rate.
- 8.2.2 Turn on the apparatus prior to standardization and allow it to stabilize. Follow the manufacturer's recommendations in order to provide the most stable and consistent results.
- 8.2.3 Using the reference standard, take at least four repetitive readings at the normal measurement period and determine the mean. If available on the apparatus, one measurement period of four or more times the normal period is acceptable. This constitutes one standardization check.
- 8.2.4 If the value obtained in 8.2.3 is within the following stated limits, the apparatus is considered to be in satisfactory operating condition and the value may be used to determine the count ratios for the day of use. If the value is outside these limits, allow additional time for the apparatus to stabilize, make sure the area is clear of sources of interference and then conduct another standardization check. If the second standardization check is within the limits, the apparatus may be used, but if it also fails the test, the apparatus shall be adjusted or repaired as recommended by the manufacturer. The limits are as follows:

$$|N_s - N_o| \le 2.0 \sqrt{N_o/F} \tag{1}$$

where:

 N_s = value of current standardization count,

 N_o = average of the past four values of N_s taken previously,

and

F = value of any prescale.

Note 3—The count per measurement periods shall be the total number of gammas detected during the timed period. The displayed value must be corrected for any prescaling which is built into the instrument. The prescale value (F) is a divisor which reduces the actual value for the purpose of display. The manufacturer will supply this value if other than 1.0.