SLOVENSKI STANDARD oSIST prEN IEC 62271-110:2022

01-oktober-2022

Visokonapetostne stikalne in krmilne naprave - 110. del: Preklapljanje induktivnega bremena

High-voltage switchgear and controlgear - Part 110: Inductive load switching

Hochspannungs-Schaltgeräte und -Schaltanlagen - Teil 110: Schalten induktiver Lasten

Appareillage à haute tension - Partie 110: Manuvre de charges inductives

Ta slovenski standard je istoveten z: prEN IEC 62271-110:2022

ICS:

$\begin{array}{ll}\text { 29.130.10 } & \begin{array}{l}\text { Visokonapetostne stikalne in } \\ \text { krmilne naprave }\end{array} \\ \begin{array}{l}\text { High voltage switchgear and } \\ \text { controlgear }\end{array}\end{array}$
oSIST prEN IEC 62271-110:2022 en

iTeh STANDARD PREVIEW (standards.iteh.ai)

OSIST prEN IEC 62271-110:2022
hitps:/standars.iteh.ai/catalog/standards/sist/84db742a-7 69-462e-909a97499 e 885 d 9 d"osist-pren-iec-62271-110-2022

17A/1354/CDV

COMMITTEE DRAFT FOR VOTE (CDV)

PRoject number:
IEC 62271-110 ED5

DATE OF CIRCULATION:	ClOSING DATE FOR VOTING:
$\mathbf{2 0 2 2 - 0 8 - 1 9}$	$\mathbf{2 0 2 2 - 1 1 - 1 1}$

SUPERSEDES DOCUMENTS:
17A/1345/CD, 17A/1353/CC

IEC SC 17A : Switching devices	
Secretariat: Sweden	SECRETARY: Mr Anne Bosma
Of interest to the following committees:	PROPOSED HORIZONTAL STANDARD: \square
	Other TC/SCs are requested to indicate their interest, if any, in this CDV to the secretary.
Functions concerned:	
\square EMC \square ENVIRONMENT	\square QUALITY ASSURANCE \square SAFETY
【 Submitted for CENELEC parallel voting	\square Not submitted for Cenelec parallel voting
Attention IEC-CENELEC parallel voting	
The attention of IEC National Committees, members of CENELEC, is drawn to the fact that this Committee Draft for Vote (CDV) is submitted for parallel voting.	
The CENELEC members are invited to vote through the CENELEC online voting system.	

This document is still under study and subject to change. It should not be used for reference purposes.
Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

```
Title:
High-voltage switchgear and controlgear - Part 110: Inductive load switching
```

PROPOSED STABILITY DATE: 2030
Note from TC/SC officers:

Copyright © 2022 International Electrotechnical Commission, IEC. All rights reserved. It is permitted to download this electronic file, to make a copy and to print out the content for the sole purpose of preparing National Committee positions. You may not copy or "mirror" the file or printed version of the document, or any part of it, for any other purpose without permission in writing from IEC.

CONTENTS

FOREWORD 4
1 Scope 6
2 Normative references 6
3 Terms and definitions 7
4 Type tests 8
4.1 General 8
4.2 Miscellaneous provisions for inductive load switching tests 8
4.3 High-voltage motor current switching tests 9
4.3.1 Applicability 9
4.3.2 General 9
4.3.3 Characteristics of the supply circuits 10
4.3.4 Characteristics of the load circuit 11
4.3.5 Test voltage 11
4.3.6 Test-duties 12
4.3.7 Test measurements 12
4.3.8 Behaviour and condition of switching device 12
4.3.9 Test report 13
4.4 Shunt reactor current switching tests 14
4.4.1 Applicability 14
4.4.2 General 15
4.4.3 Test circuits 15
4.4.4 Characteristics of the supply circuit 18
4.4.5 Characteristics of the connecting leads 18
4.4.6 Characteristics of the load circuits 18
4.4.7 Earthing of the test circuit 23
4.4.8 Test voltage 23
4.4.9 Test-duties 23
Annex A (normative) Calculation of t_{3} values 27
Bibliography 29
Figure 1 - Motor switching test circuit and summary of parameters 10
Figure 2 - Illustration of voltage transients at interruption of inductive current for first phase clearing in a three-phase non-effectively earthed circuit 14
Figure 3 - Reactor switching test circuit - Three-phase test circuit for in-service load circuit configurations 1 and 2 (Table 2) 16
Figure 4 - Reactor switching test circuit - Single-phase test circuit for in-service load circuit configurations 1, 2 and 4 (Table 2) 17
Figure 5 - Reactor switching test circuit - Three-phase test circuit for in-service load circuit configuration 3 (Table 2) 18
Figure 6 - Illustration of voltage transients at interruption of inductive current for a single-phase test 26
Table 1 - Test-duties at motor current switching tests 12
Table 2 - In-service load circuit configurations 15
Table 3 -Values of prospective transient recovery voltages - Rated voltages 12 kV to 170 kV for effectively and non-effectively earthed systems - Switching shunt reactors with isolated neutrals (Table 2: In-service load circuit configuration 1) 19
Table 4 - Values of prospective transient recovery voltages - Rated voltages 100 kV to 1200 kV for effectively earthed systems - Switching shunt reactors with earthed neutrals (See Table 2: In-service load circuit configuration 2) 20
Table 5 - Values of prospective transient recovery voltages - Rated voltages 12 kV to 52 kV for effectively and non-effectively earthed systems - Switching shunt reactors with isolated neutrals (See Table 2: In-service load circuit configuration 3) 21
Table 6 - Values of prospective transient recovery voltages - Rated voltages 12 kV to 52 kV for effectively and non-effectively earthed systems - Switching shunt reactors with earthed neutrals (See Table 2: In-service load circuit configuration 4) 22
Table 7 - Load circuit 1 test currents 22
Table 8 - Load circuit 2 test currents 23
Table 9 - Test-duties for reactor current switching tests 24

HIGH-VOLTAGE SWITCHGEAR AND CONTROLGEAR -
 Part 110: Inductive load switching

 FOREWORD

 FOREWORD}

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62271-110 has been prepared by subcommittee 17A: Switching devices, of IEC technical committee 17: High-voltage switchgear and controlgear.

This fifth edition cancels and replaces the fourth edition published in 2017 and constitutes an editorial revision.

This edition includes the following significant technical changes with respect to the previous edition:

- references to IEC 62271-100 and IEC 62271-106 have been updated to the latest editions.

The text of this International Standard is based on the following documents:

FDIS	Report on voting
$17 \mathrm{~A} / \mathrm{xxx} /$ FDIS	$17 \mathrm{~A} / \mathrm{xxx} /$ RVD

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of the IEC 62271 series can be found, under the general title High-voltage switchgear and controlgear, on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

HIGH-VOLTAGE SWITCHGEAR AND CONTROLGEAR -

Part 110: Inductive load switching

1 Scope

This part of IEC 62271 is applicable to AC switching devices designed for indoor or outdoor installation, for operation at frequencies of 50 Hz and 60 Hz on systems having voltages above 1000 V and applied for inductive current switching. It is applicable to switching devices (including circuit-breakers in accordance with IEC 62271-100) that are used to switch high-voltage motor currents and shunt reactor currents and also to high-voltage contactors used to switch high-voltage motor currents as covered by IEC 62271-106.

Switching unloaded transformers, i.e. breaking transformer magnetizing current, is not considered in this document. The reasons for this are as follows:
a) Owing to the non-linearity of the transformer core, it is not possible to correctly model the switching of transformer magnetizing current using linear components in a test laboratory. Tests conducted using an available transformer, such as a test transformer, will only be valid for the transformer tested and cannot be representative for other transformers.
b) As detailed in IEC TR 62271-306, the characteristics of this duty are usually less severe than any other inductive current switching duty. Such a duty may produce severe overvoltages within the transformer winding(s) depending on the re-ignition behaviour of the switching device and transformer winding resonance frequencies.

NOTE 1 The switching of tertiary reactors from the high-voltage side of the transformer is not covered by this document.

NOTE 2 The switching of shunt reactors earthed through neutral reactors is not covered by this document. However, the application of test results according to this document, on the switching of neutral reactor earthed reactors (4-leg reactor scheme), is discussed in IEC TR 62271-306.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050-441:1984, International Electrotechnical Vocabulary - Chapter 441: Switchgear, controlgear and fuses (available at www.electropedia.org)
IEC 60050-441:1984/AMD1:2000

IEC 62271-1:2017, High-voltage switchgear and controlgear - Part 1: Common specifications for alternating current switchgear and controlgear
IEC 62271-1:2017/AMD1:2021

IEC 62271-100:2021, High-voltage switchgear and controlgear - Part 100: Alternating current circuit-breakers

IEC 62271-106:2021, High-voltage switchgear and controlgear - Part 106: Alternating current contactors, contactor-based controllers and motor-starters

3 Terms and definitions

For the purposes of this document, the terms and definitions given in IEC 60050-441, IEC 62271-1 and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

3.1
 inductive current
 power-frequency current drawn by an inductive circuit having a power factor 0,5 or less

3.2
 current chopping

abrupt current interruption in a switching device at a point-on-wave other than the natural power-frequency current zero

3.3
 virtual current chopping

current chopping in one of the three phases in a three-phase circuit originated by transients in another phase of the circuit

3.4
 suppression peak
 first peak of the transient voltage to earth on the load side of the switching device following current interruption

Note 1 to entry: Suppression peak is not necessarily the absolute maximum of the transient recovery voltage. Previous breakdowns may have appeared at higher voltage values.

3.5
 recovery peak

maximum value of the voltage across the switching device occurring when the polarity of the recovery voltage is equal to the polarity of the power-frequency voltage

Note 1 to entry: Recovery peak is not necessarily the absolute maximum of the transient recovery voltage. Previous breakdowns may have appeared at higher voltage values.

3.6

re-ignition

resumption of current between the contacts of a mechanical switching device during a breaking operation with an interval of zero current of less than a quarter cycle of power frequency

[^0]
4 Type tests

4.1 General

Circuit-breakers according to IEC 62271-100 and contactors according to IEC 62271-106 do not have dedicated inductive switching ratings. However, switching devices applied for this purpose shall meet the requirements of this document.

For shunt reactor switching test of circuit-breakers, the rated insulation level values stated in Tables 1, 2, 3 and 4 of IEC 62271-1:2017 are applicable with the exception of combined voltage tests across the isolating distance (columns (6) and (8) in Table 3 and column (5) in Table 4).

The type tests are in addition to those specified in the relevant product standard, with the exception of short-line faults, out-of-phase switching and capacitive current switching.

NOTE 1 The reason for this exception is the source-less nature of the shunt reactor load circuit.
NOTE 2 In some cases (high chopping overvoltage levels, or where a neutral reactor is present or in cases of shunt reactors with isolated neutral), it can be necessary to specify an appropriate insulation level which is higher than the rated values stated above.

Inductive current switching tests performed for a given current level and type of application may be considered valid for another current rating and same type of application as detailed below:
a) for shunt reactor switching at rated voltages of 52 kV and above, tests at a particular current level are to be considered valid for applications with a higher current level up to 150% of the tested current value;
b) for shunt reactor switching at rated voltages below 52 kV , type testing is required;
c) for high-voltage motor switching, type testing for stalled motor currents at 100 A and 300 A is considered to cover stalled motor currents in the range 100 A to 300 A and up to the current associated with the short-circuit current of test-duty T10 according to 7.107 .2 of IEC 62271-100:2021 for circuit-breakers and up to the rated operational current for contactors.

With respect to a) the purpose of type testing is also to determine a re-ignition-free arcing time window for controlled switching purposes (refer to IEC TR 62271-302) and caution should be exercised when considering applications at higher currents than the tested values since the re-ignition-free arcing window can increase at higher current.

Annex B of IEC 62271-100:2021 can be used with respect to tolerances on test quantities.

4.2 Miscellaneous provisions for inductive load switching tests

Subclause 7.102 of IEC 62271-100:2021 is applicable with the following addition:
High-voltage motor current and shunt reactor switching tests shall be performed at rated auxiliary and control voltage or, where necessary, at maximum auxiliary and control voltage to facilitate consistent control of the opening and closing operation according to 7.102.3.1 of IEC 62271-100:2021.

For gas filled switching devices (including vacuum switching devices using gaseous media for insulation), tests shall be performed at the rated functional pressure for interruption and insulation, except for test-duty 4, where the pressure shall be the minimum functional pressure for interruption and insulation.

4.3 High-voltage motor current switching tests

4.3.1 Applicability

Subclause 4.3 is applicable to three-phase alternating current switching devices having rated voltages above 1 kV and up to $17,5 \mathrm{kV}$, which are used for switching high-voltage motors. Tests may be carried out at 50 Hz with a relative tolerance of $\pm 10 \%$ or 60 Hz with a relative tolerance of $\pm 10 \%$, both frequencies being considered equivalent.

Motor switching tests are applicable to all three-pole switching devices having rated voltages equal to or less than $17,5 \mathrm{kV}$, which may be used for the switching of three-phase asynchronous squirrel-cage or slip-ring motors. The switching device may be of a higher rated voltage than the motor when connected to the motor through a stepdown transformer. However, the usual application is a direct cable connection between switching device and motor. When tests are required, they shall be made in accordance with 4.3.2 to 4.3.9.

When overvoltage limitation devices are mandatory for the tested equipment, the voltage limiting devices may be included in the test circuit provided that the devices are an intrinsic part of the equipment under test.

No limits to the overvoltages are given as the overvoltages are only relevant to the specific application. Overvoltages between phases may be as significant as phase-to-earth overvoltages.

4.3.2 General

The switching tests can be either field tests or laboratory tests. As regards overvoltages, the switching of the current of a starting or stalled motor is usually the more severe operation.

Due to the non-linear behaviour of the motor iron core, it is not possible to exactly model the switching of motor current using linear components in a test station. Tests using linear components to simulate the motors can be considered to be more conservative than switching actual motors.

For laboratory tests a standardized circuit simulating the stalled condition of a motor is specified (refer to Figure 1). The parameters of this test circuit have been chosen to represent a relatively severe case with respect to overvoltages and will cover the majority of service applications.

The laboratory tests are performed to prove the ability of a switching device to switch motors and to establish its behaviour with respect to switching overvoltages, re-ignitions and current chopping. These characteristics may serve as a basis for estimates of the switching device's performance in other motor circuits. Tests performed with the test currents defined in 4.3 .3 and 4.3.4 demonstrate the capability of the switching device to switch high-voltage motors up to its rated interrupting current.

For field tests, actual circuits are used with a supply system on the source side and a cable and motor on the load side. There may be a transformer between the switching device and motor. However, the results of such field tests are only valid for switching devices working in circuits similar to those during the tests.

The apparatus under test includes the switching device with overvoltage protection devices if they are normally fitted.

NOTE 1 Overvoltages can be produced when switching running motors. This condition is not represented by the substitute circuit and is generally considered to be less severe than the stalled motor case.

NOTE 2 The starting period switching of a slip-ring motor is generally less severe due to the effect of the starting resistor.

Key

U_{r}	rated voltage
Z_{e}	earthing impedance
L_{s}	source side inductance

$C_{\text {s }}$	supply side capacitance
$L_{\mathrm{b} 1}$	inductance of capacitors and connections
Bus representation	
$L_{\text {b2 }}$	inductance of connections
Cable	
L	motor substitute inductance
R	motor substitute resistance
C_{p}	motor substitute parallel capacitance
$R_{\text {p }}$	motor substitute parallel resistance

impedance high enough to limit the phase-to-earth fault current to less than the test current (can be infinite)
$\omega L_{\mathrm{s}} \leq 0,1 \omega L$, but prospective short-circuit current \leq the rated short-circuit current of the tested switching device
$0,03 \mu \mathrm{~F}$ to $0,05 \mu \mathrm{~F}$ for supply circuit A
$1,5 \mu \mathrm{~F}$ to $2 \mu \mathrm{~F}$ for supply circuit B
$\leq 2 \mu \mathrm{H}$

5 m to 7 m in length spaced appropriate to the rated voltage
$\leq 5 \mu \mathrm{H}$
$100 \mathrm{~m} \pm 10 \mathrm{~m}$, screened, surge impedance 30Ω to 50Ω
load circuit 1: $100 \mathrm{~A} \pm 10 \mathrm{~A}$
load circuit 2: $300 \mathrm{~A} \pm 30 \mathrm{~A}$
$\cos \varphi \leq 0,2$
frequency 10 kHz to 15 kHz
amplitude factor 1,6 to 1,8

Figure 1 - Motor switching test circuit and summary of parameters

4.3.3 Characteristics of the supply circuits

4.3.3.1 General

A three-phase supply circuit shall be used. The tests shall be performed using two different supply circuits A and B as specified in 4.3.3.2 and 4.3.3.3, respectively. Supply circuit A represents the case of a motor connected directly to a transformer. Supply circuit B represents the case where parallel cables are applied on the supply side.

4.3.3.2 Supply circuit A

The three-phase supply may be earthed through a high ohmic impedance so that the supply voltage is defined with respect to earth. The impedance value shall be high enough to limit a prospective line-to-earth fault current to a value below the test current.

[^0]: Note 1 to entry: In the case of inductive load switching the initiation of the re-ignition is a high-frequency event, which can be of a single or multiple nature and may in some cases be interrupted without power-frequency follow current.

 ## 3.7

 re-ignition-free arcing time window
 period of arc duration during a breaking operation during which the contacts of a mechanical switching device reach sufficient distance to exclude re-ignition

