INTERNATIONAL STANDARD 2604/II

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION MEXATION OF A PARTIAL OF A PARTICLE AND A PARTICIPAL OF A PARTI

Steel products for pressure purposes – Quality requirements – Part II : Wrought seamless tubes

Produits en acier pour appareils à pression - Spécifications de qualité - Partie II : Tubes laminés sans soudure

First edition – 1975-05-01 Teh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 2604-2:1975</u> https://standards.iteh.ai/catalog/standards/sist/b6ace1f6-239d-4187-91cd-3e56183a7549/iso-2604-2-1975

SO 2604/II-1975 (E)

UDC 669.14.018.452-462.3

Ref. No. ISO 2604/II-1975 (E)

Descriptors : pressure equipment, metal tubes, seamless pipes, pressure pipes, steels, specifications, chemical composition, mechanical properties, heat treatment, testing conditions.

FOREWORD

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO Member Bodies). The work of developing International Standards is carried out through ISO Technical Committees. Every Member Body interested in a subject for which a Technical Committee has been set up has the right to be represented on that Committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the Technical Committees are circulated to the Member Bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 2604/II (originally ISO/DIS 2605) was drawn up by VIEW Technical Committee ISO/TC 17, Steel, and circulated to the Member Bodies in October 1971.

It has been approved by the Member Bodies of the following countries 075

https://standards.iteh.ai/cat	alog/standards/sist/b6ace1f6-239d-4187-91cd
India 3e561	83 South Africa Rep of
Ireland	Spain
Italy	Switzerland
Japan	Thailand
Korea, Rep. of	Turkey
Netherlands	United Kingdom
New Zealand	U.S.S.R.
Portugal	
Romania	
	https://standards.iteh.ai/cat India 3e561 Ireland Italy Japan Korea, Rep. of Netherlands New Zealand Portugal Romania

The Member Bodies of the following countries expressed disapproval of the document on technical grounds :

France Norway Sweden U.S.A.

© International Organization for Standardization, 1975 •

Steel products for pressure purposes - Quality requirements -Part II : Wrought seamless tubes

1 SCOPE AND FIELD OF APPLICATION

This International Standard specifies the quality requirements for plain end wrought seamless tubes for pressure purposes manufactured from the steel types listed in table 3.

NOTE – The word "tube" is synonymous with "pipe".

This International Standard does not cover :

a) casing, tubing, drill pipe and linepipe for use by the oil and natural gas industries, and

b) tubes for the transport of gas, water and sewage. ITeh STANDARD3 PGENERAL REQUIREMENTS

Part I : Yield or proof stress of carbon and low alloy steel products.2)

ISO 2605/II, Steel products for pressure purposes - Derivation and verification of elevated temperature properties --Part II : Proof stress of austenitic steel products.²⁾

ISO 2694, Pressure vessels, 2)

ISO/DATA No. 1, Summary of average stress rupture properties for wrought boiler and pressure vessel steels for times of 10 000 hours to 250 000 hours and master curves.

2 REFERENCES

(standards.itanInformation to be supplied by the purchaser

ISO/R 85, Bend test for steel.

ISO 148, Steel - Charpy impact test (V-notch). 1) ISO 2604-2:1973.1.1 The purchaser shall state on his enquiry and order atalog/standards/sisttheatequirements given below :

3e56183a7549/iso-2604-2a) 97the tube dimensions and tolerances (see 3.8);ISO/R 165, Flanging test on steel tubes.

ISO/R 166, Drift expanding test on steel tubes.

ISO/R 202, Flattening test on steel tubes.

ISO/R 205. Determination of proof stress and proving test for steel at elevated temperatures.

ISO 375, Steel - Tensile testing of tubes.

ISO/R 377, Selection and preparation of samples and test pieces for wrought steel.

ISO/R 404, General technical delivery requirements for steel

ISO/R 643, Micrographic determination of the austenitic grain size of steels.

ISO/R 783, Mechanical testing of steel at elevated temperatures - Determination of lower yield stress and proof stress and proving test.

ISO 2566/I, Steel - Conversion of elongation values -Part I : Carbon and low alloy steels.

ISO 2605/I, Steel products for pressure purposes - Derivation and verification of elevated temperature properties -

- b) the steel type (see table 3);
- c) the test category (see 3.11);

d) the inspection procedures and type of documents (see 3.9, 3.15, 4.2 and 5.2).

3.1.2 Certain alternatives are permitted by this International Standard and the purchaser may also state on his enquiry and order his requirements as follows, but if no such statement is made, supply will be at the option of the manufacturer :

- e) the deoxidation practice (see 3.2.3);
- f) heat-treatment condition of supply (see 3.4);
- g) if a product (check) analysis is required (see 3.5.2);

h) if additional mechanical tests are required (see 3.6.1.2;

i) any special requirements for freedom from defects (see 3.7.2);

j) any special straightness requirements (see 3.7.4);

¹⁾ At present at the stage of draft (revision of ISO/R 148).

²⁾ At present at the stage of draft.

k) if special protection is required (see 3.7.6);

1) if cast separation is required (see 3.12.1.3);

m) if room temperature impact tests are required and, if so, the number of test pieces (see 3.12.1.6);

n) if the hydraulic test is to be omitted (see 3.12.3);

o) if a drift expanding or flanging test, when appropriate, is required (see 3.13.3);

p) the details of non-destructive tests, if required (see 3.13.6);

q) if elevated temperature proof stress tests are required and, if so, the testing temperature selected from table 5 (see 4.2.2.2);

r) if low temperature V-notch impact tests are required and, if so, the testing temperature selected from table 7 (see 5.2.2);

s) if a maximum copper content is required (see table 3, note 1).

3.2 Manufacture of the steel

3.2.1 Unless otherwise stated on the enquiry and order, the steelmaking process and the deoxidation practice within the provisions of 3.2.2, 3.2.3 and table 3 will be at the option of the steel manufacturer.

3.2.2 The steel shall be produced by a the open hearthy star electric or one of the basic oxygen processes. Other 754 processes may be used by agreement between the interested parties¹⁾. If he so requests, the purchaser shall be informed of the steelmaking process used.

3.2.3 Deoxidation practice shall be as defined in table 3 for the steel type specified.

NOTE - ISO documents covering the use of tubes for pressure purposes place additional limitations on deoxidation practice for certain applications. For such applications the purchaser shall ensure that these limitations are stated on the enquiry and order.

3.3 Manufacture of the product

The tubes shall be manufactured by a seamless process and may be hot-finished or cold-finished. The terms "hotfinished" and "cold-finished" apply to the condition of the tube before it is heat-treated in accordance with 3.4.

3.4 Heat treatment

3.4.1 The tubes shall be supplied in the hot-finished condition or the heat-treated condition given in table 3 for the particular steel type ordered. Where more than one level of properties is specified in table 3 for a given steel type, the level required shall be stated on the enquiry and order.

3.4.2 By agreement between the interested parties, the tubes may be delivered in a condition other than the final heat-treated condition according to table 3, in which case they shall be suitable for subsequent manipulation and the purchaser shall be informed of the heat treatment necessary to give the required properties (see also 3.6.1 and 3.12.1.4).

3.5 Chemical composition

3.5.1 Ladle analysis

The steel shall show on ladle analysis the composition given in table 3 appropriate to the steel type specified.

3.5.2 Product analysis

3.5.2.1 If a check analysis on the product is required, the permissible deviations given in table 4 shall apply to the ladle analysis specified in table 3 for samples taken from the standard position (see 3.5.2.2).

If a check analysis for acceptance purposes is required, this shall be stated on the enquiry and order.

3.5.2.2 If a check analysis on the product is required, the number of samples to be-taken shall be agreed between the interested parties.

^e The samples shall be taken either from the test pieces used for the verification of the mechanical properties, or from ISO 260471675 through the whole thickness of the tube at the pg/stan same location as for the mechanical test samples.

The requirements of 3.2 and 3.3 of ISO/R 377, covering the method of selection and preparation of samples for chemical analysis, shall apply.

3.5.3 Cases of dispute

In cases of dispute, the methods for chemical analysis shall be in accordance with the relevant ISO documents. If no ISO document is available, the method to be used shall be agreed between the interested parties.

3.6 Mechanical and technological properties

3.6.1 Mechanical properties

3.6.1.1 The mechanical properties at room temperature to be obtained on test pieces selected, prepared and tested in accordance with 3.12.1 and 3.13 are given in table 3.

3.6.1.2 If heat treatments which are different from, or additional to, the normal reference heat treatment are to be carried out after the delivery of the tubes (which may have an adverse effect on the mechanical properties), the purchaser may require, at the time of enquiry and order, additional mechanical tests on additional samples which

¹⁾ Such as the user, purchaser and manufacturer of the equipment, the producer of the supplied construction material and the inspection and/or certifying authority.

have been given heat treatments different from, or additional to, those in table 3. In this case the heat treatment of the samples and the mechanical properties to be obtained on them shall be agreed between the interested parties at the time of enquiry and order.

NOTE – The mechanical properties can be affected by heating or reheating during fabrication. Purchasers who intend to heat or reheat any of the steels are advised to discuss the application and proposed heating or reheating treatment with the supplier.

3.6.2 Weldability

The steels covered by this International Standard are generally regarded as being weldable. However, the general weldability of any of the steels, but especially of the steels with relatively high alloy content, cannot be guaranteed as the behaviour of the steel during and after welding is dependent not only on the steel but also on the welding conditions and the final use for which the steel is employed. Therefore, where appropriate, the welding procedure shall be agreed between the interested parties at the time of enquiry and order.

3.7 Appearance and soundness

3.9 Inspection procedures

The purchaser shall indicate on his enquiry and order which of the five inspection procedures listed in clause 4 of ISO/R 404 is to be followed.

NOTE – The inspection procedure selected shall, if appropriate, be compatible with the requirements of the ISO document covering the use of the product.

3.10 General rules for carrying out acceptance tests

The requirements of clause 5 of ISO/R 404 covering the following shall apply :

- a) place of acceptance;
- b) submission for inspection;
- c) rights of the inspector;
- d) acceptance.

3.11 Test categories

The tubes shall be subjected to the tests given in table 1 below for the appropriate test category.

3.7.1 The tubes shall have a workmanlike finish and shall RD PREVI	ТАВЬЕ	1 – Test	categories					
can be established by the test category (see 3 11) dards.iteh.ai)		Test categories						
Tests "	ſ			1)/	Γ			

3.7.2 Any special requirements for freedom from defects shall be agreed between the interested parties at the time of enquiry and order. https://standards.iteh.ai/catalog/standards/sis 3e56183a7549/iso-260

3.7.3 The requirements for surface defects, rectification and internal defects given in 8.1, 8.2 and 8.3 of ISO/R 404 shall apply.

3.7.4 The tubes shall be reasonably straight. Complete straightness cannot be guaranteed. Special requirements regarding straightness shall be the subject of agreement.

3.7.5 The ends shall be cut square with the axis of the tube.

3.7.6 The tubes may be supplied uncoated or with the manufacturer's standard mill protective coating, unless otherwise specified.

3.8 Dimensions and tolerances

3.8.1 The dimensions shall be in accordance with the appropriate ISO document.

3.8.2 The tolerances on the outside diameter and thickness of the tubes depend upon the method of manufacture, the steel type and the heat treatment and shall be selected from the appropriate ISO document.

3.8.3 The requirements of 8.4 of ISO/R 404 shall apply.

eh.ai)	Test categories												
l ests "/	11	111	IV	v									
D Visual inspection boace110-2390-4187-91	cd-×	x	х	х									
4 Hydraufic	х	х	χ2)	χ2)									
Tensile	×	x	х	x									
Flattening or bend	х	x	х	х									
Drift expanding or flanging		x		x									
Non-destructive testing			_X 2)	×2)									

1) If required, an impact test at room temperature may be carried out for any of the test categories (see 3.12.1.6).

2) See 3.12.3.

3.12 Number, selection and preparation of samples and test pieces

3.12.1 Mechanical tests at room temperature

3.12.1.1 The requirements of 2.3 and 2.4 of ISO/R 377, covering the identification and preparation of samples and test pieces, shall apply.

3.12.1.2 For test categories II and III, the number of tubes on which mechanical tests at room temperature are to be performed shall be as follows :

a) up to and including 323,9 mm outside diameter : one tube in each 200 tubes as made;

b) over 323,9 mm outside diameter : one tube in each 100 tubes as made.

The samples shall be taken at random from batches containing not more than 200 tubes as presented for inspection. If the number of samples specified in this clause, when applied to a particular order, necessitates a number of tubes which includes a fraction, the fraction shall be treated as unity.

A batch is a convenient quantity of tubes of the same type of steel, diameter and thickness, such that a suitable number of sample tubes taken at random from a batch for purposes of test will adequately represent the whole batch.

3.12.1.3 For test categories IV and V, the number of tubes on which mechanical tests at room temperature are to be performed shall be as follows :

a) not heat-treated : 2 % of the tubes from each batch;

b) heat-treated : 2 % of the tubes from each heat-treatment batch.

For tubes not heat-treated, a batch shall consist only of tubes of the same diameter and thickness and of the same steel type. For tubes which are heat-treated, a batch shall consist only of tubes of the same diameter and thickness, and of the same steel type, subjected to the same finishing treatment in a continuous furnace, or heat-treated in the same furnace charge in a batch-type furnace.

Cast separation may be carried out when specified on the 3.13.1 Tensile test at room temperature enquiry and order and agreed between the interested 3.7549/iso-2604-2-1975 3.13.1.1 The tensile test shall be carried 3.13.1 tensile test shall be careid 3.13.1 tensile test shall be carried 3.13.

NOTE – Cast separation is required for all tubes having specified elevated or low temperature properties and which are subjected to acceptance tests for these properties.

3.12.1.4 The test sample shall be cut from the tube after final heat-treatment. If the tubes are to be delivered in a condition different from the specified final heat-treatment condition, the test samples shall be in the reference heat-treatment condition required by table 3.

3.12.1.5 From each tube selected for testing, one test piece shall be prepared for each of the mechanical tests required by 3.11.

For the tensile test, the test piece may be taken longitudinally or transversely at the option of the manufacturer. The dimensions of the test piece shall comply with the appropriate ISO document.

For the bend test, the test piece shall consist of a circumferential strip cut from the tube and of full thickness of the tube or, for large tubes, a test piece machined from a circumferential strip to a rectangular cross-section 38 mm X 19 mm. The edges may be rounded to a radius of 1,6 mm.

3.12.1.6 Where the dimensions of the tube permit the taking of a full size $(10 \text{ mm} \times 10 \text{ mm})$ test piece, and if agreed between the interested parties, or if required by the

application code (see for example ISO 2694) one or, if agreed at the time of enquiry and order, three V-notch impact test pieces shall be taken from one of the tubes selected.

The form and dimensions of the test pieces shall be in accordance with ISO 148.

The test pieces shall be cut so that the longitudinal axes are transverse to the longitudinal axis of the tube. The notch shall be perpendicular to the original surface of the tube.

3.12.2 Visual inspection

Every tube shall be inspected.

3.12.3 Hydraulic test

A hydraulic test shall be carried out on each tube except that, by agreement between the interested parties, the hydraulic test may be omitted for tubes of test categories IV and V which have been ultrasonically tested for acceptance purposes in accordance with the annex.

3.12.4 Non-destructive testing

All tubes to test categories IV and V shall be non-destructive tested for acceptance purposes.

US.Iteh.al) 3.13 Test methods and test results

3.13.1.1 The tensile test shall be carried out in accordance with ISO 375.

3.13.1.2 The tensile strength R_m , the lower yield stress R_{eL} or proof stress R_p , and the elongation A shall be determined. The results obtained shall meet the requirements given in table 3.

For acceptance purposes, the proof stress (total elongation) R_{t} may be determined. The 0,5 % proof stress (total elongation) $R_{t0,5}$ shall be used for ferritic steels having a specified lower yield stress R_{eL} or 0,2 % proof stress (non-proportional elongation) $R_{p0,2}$. The 1,0 % proof stress (total elongation) $R_{t1,0}$ shall be used for austenitic steels having a specified 1,0 % proof stress (non-proportional elongation). However, in cases of dispute, the lower yield stress R_{eL} , or proof stress (non-proportional elongation) $R_{p0,2}$ ($R_{p1,0}$ for austenitic steels), shall be determined.

The percentage elongation shall be reported with reference to a 5,65 $\sqrt{S_o}$ gauge length. If other gauge lengths are used, the corresponding elongation on 5,65 $\sqrt{S_o}$ should be obtained by reference to ISO 2566/I. In cases of dispure, a gauge length of 5,65 $\sqrt{S_o}$ shall be used.

3.13.2 Flattening or bend test

3.13.2.1 At the option of the manufacturer, and as determined by the dimensions of the tube, either a flattening test (see 3.13.2.2) or a bend test (see 3.13.2.3) shall be carried out.

3.13.2.2 The flattening test shall be carried out in accordance with ISO/R 202. The test piece shall show no crack or flaw when the distance between the platens is not greater than the value given by the formula :

$$H = \frac{(1+C) a}{C+a/D}$$

where

- H is the distance, in millimetres, between platens;
- a is the specified thickness, in millimetres;
- D is the specified outside diameter, in millimetres;

C is a constant depending on the steel type (see table 3).

3.13.2.3 The bend test shall be carried out in accordance with ISO/R 85. The test piece shall be doubled over, cold, in the direction of original curvature, round a bar of the diameter specified in table 3 as being appropriate to the steel type specified. It shall show no crack or flaw, but slight premature failure at the edges shall not be considered a cause for rejection. II CH SIANDA

3.13.3 Drift expanding or flanging test (standards.i

3.13.5 Hydraulic test

Every tube, except as provided in 3.12.3, shall be hydraulically tested at the manufacturer's works.

The hydraulic pressure for all test categories shall be 1,5 times the design pressure, but not greater than the pressure calculated from the formula :

$$P=\frac{20\ S\ a}{D}$$

where

P is the test pressure, in bars;

- D is the specified outside diameter, in millimetres;
- *a* is the specified thickness, in millimetres:

S is the stress, in newtons per square millimetre, which shall be taken as 80 % of the minimum yield stress at room temperature for ferritic steels and 70 % of the minimum 1,0 % proof stress (non-proportional elongation), $R_{p1,0}$, at room temperature for austenitic steels as specified in the order.

The test pressure shall be maintained sufficiently long for proof and inspection. Any tube failing to withstand the hydraulic pressure test/shall be deemed not to comply with this International Standard.

teh.ai) 3.13.6 Non-destructive testing Unless otherwise agreed at the time of enquiry and or enquiry and is at the option of the tube manufacturer whether or not a ds/sist of guality categories IV and V by a method to be agreed drift expanding or flanging test is carried out. 3e56183a7549/iso-260

3.13.3.1 The drift expanding test shall be carried out in accordance with ISO/R 166. The test piece shall, without cracking, be expanded by a mandrel having an included angle of 30° , 45° or 60° at the option of the manufacturer, to increase the outside diameter by the amount specified in table 3 as being appropriate to the steel type specified.

3.13.3.2 The flanging test shall be carried out in accordance with ISO/R 165. The outside diameter of the flange shall exceed the outside diameter of the tube by the amount shown in table 3 as being appropriate to the steel type specified. After flanging, the tube shall show no crack or flaw.

3.13.4 Impact test at room temperature

3.13.4.1 The impact test shall be carried out in accordance with ISO 148.

3.13.4.2 If one test piece is used, the value obtained shall meet the requirements given in table 3.

3.13.4.3 If three test pieces are used, the average value obtained shall meet the requirements given in table 3. One individual value may be below the specified value provided that it is not less than 70 % of that value.

between the interested parties. If the tubes are to be ultrasonically tested, the annex shall be used as the basis for agreement.

3.14 Retests

The requirements of 6.5 and 7.6 of ISO/R 404 shall apply, except in the case of impact tests, where the average of the results on three test pieces shall be taken. In this latter case the following procedure shall be used :

If the average of three impact values is lower than the specified value, or if any one value is lower than 70 % of this specified value, three additional test pieces shall be taken from the same sample and tested. The average value of the six tests shall be not less than the specified value. Not more than two of the individual values may be lower than the specified value and not more than one may be lower than 70 % of this value.

3.15 Documents

The purchaser shall state at the time of enquiry and order which of the documents permitted by clause 4 of ISO/R 404 are to be provided (see also 3.9).

3.16 Marking

3.16.1 The tubes shall be legibly marked to show :

a) the identification symbols for the type of steel as given in table 3;

b) the brand of the manufacturer of the tubes;

c) a designation of the method of manufacture;

d) symbols, letters or numbers which relate the test certificates, test pieces and products to each other.

3.16.2 If paint is used for marking, it shall be free of lead, copper, zinc and tin.

3.16.3 On small diameter tubes which are bundled or boxed, the information in 3.16.1 may be marked on a tag securely attached to the bundle or box in which they are shipped.

4 SPECIAL REQUIREMENTS FOR TUBES IN STEEL TYPES HAVING SPECIFIED ELEVATED TEMPERA-TURE PROPERTIES

4.1 Mechanical properties

4.1.1 For the steel types which have specified elevated A temperature properties, the minimum elevated temperature proof stress values, derived in accordance with clause 2 of ISO 2605/I (in the case of austenitic steels, ISO 2605/II), are given in table 5.

4.2.2.3 VERIFICATION WITHOUT ACCEPTANCE TESTS

The elevated temperature proof stress values shall be verified by the procedure given in clause 3 of ISO 2605/I or, in the case of austenitic steels, ISO 2605/II. The 95 % lower confidence limits of the elevated temperature proof stress values which are necessary for the application of that procedure are given in figures 1 to 13 for the various steel types.

4.2.3 Stress rupture properties.

For steel tubes supplied to this International Standard, the average stress rupture properties given in table 6 are valid provided that :

a) the product has been manufactured strictly in accordance with the technical requirements of this International Standard, to ensure that the stress rupture requirements are complied with :

b) the producer of the steel supplies a statement to this effect, which shall be agreed by the interested parties.

A 5 SPECIAL REQUIREMENTS FOR TUBES IN STEEL TYPES HAVING SPECIFIED LOW TEMPERATURE PROPERTIES

5.1 Mechanical properties

4.1.2 For the same steel types, average stress, rupture 7549/properties, the minimum longitudinal Charpy V-notch properties are given in table 6.

4.2 Verification and testing

4.2.1 All the test categories shown in 3.11 apply.

4.2.2 Elevated temperature proof stress

4.2.2.1 The elevated temperature proof stress values shall be verified either by elevated temperature acceptance testing or by the procedure given in clause 3 of ISO 2605/I or, in the case of austenitic steels, in ISO 2605/II.

4.2.2.2 VERIFICATION BY ACCEPTANCE TESTS

One test shall be made on each cast using a test sample prepared in accordance with 3.12.1, and with the test piece taken at a position adjacent to one of the test pieces used for the tensile test at room temperature. If tubes or more than one thickness are to be supplied from one cast, then the test shall be made on the thickest tube.

The proof stress tests at elevated temperature shall be carried out in accordance with ISO/R 205 or ISO/R 783 at a temperature selected from table 5 and agreed between the interested parties at the time of enquiry and order.

For retests the requirements of 6.5 of ISO/R 404 shall apply.

5.2 Verification and testing

5.2.1 All the test categories shown in 3.11 shall apply to the tubes covered by this sub-clause.

5.2.2 Tests shall only be carried out if so stated on the enquiry and order and if the thickness of the tube is ≥ 6 mm.

NOTE – International Standards covering the use of tubes in the construction of pressure vessels include mandatory low temperature test requirements.

5.2.3 If low temperature impact tests are required, the number of tubes on which impact tests are to be carried out shall be :

- a) not heat-treated : one tube per batch;
- b) heat-treated : one tube per heat-treatment batch where a heat-treatment batch is as defined in 3.12.1.3.

5.2.4 From the sample tube, three longitudinal ISO V-notch test pieces shall be prepared, the form and dimensions of which shall be in accordance with ISO 148.

The test pieces shall be cut so that the longitudinal axes are transverse to the longitudinal axis of the tube. The notch shall be perpendicular to the original surface of the tube. **5.2.5** The tests shall be carried out in accordance with ISO 148 at a temperature selected from table 7 and agreed between the interested parties at the time of enquiry and order.

5.2.6 The average value of the three tests shall meet the requirements given in table 7. One of the three individual values may be below the specified minimum average value of table 7 provided it is not less than 70 % of that value.

5.2.7 For retests the following procedure shall be used :

If the average of three impact values is lower than the specified value, or if any one value is lower than 70 % of this specified value, three additional test pieces shall be taken from the same sample and tested. The average value of the six tests shall be not less than the specified value. Not more than two of the individual values may be lower than the specified value, and not more than one may be lower than 70 % of this value.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 2604-2:1975</u> https://standards.iteh.ai/catalog/standards/sist/b6ace1f6-239d-4187-91cd-3e56183a7549/iso-2604-2-1975

ANNEX

ULTRASONIC TESTING OF TUBES FOR LONGITUDINAL DEFECTS

(All dimensions are the nominal specified dimensions.)

A.1 METHOD OF TEST

A.1.1 The tubes shall be tested for defects of a predominantly longitudinal character using an ultrasonic technique.

A.1.2 The tubes to be tested shall be sufficiently straight and the surfaces shall be free from any foreign matter that interferes with the interpretation of the test.

A.1.3 During testing, the tubes or search units shall be moved so that the probes traverse the tube surface in a helix. Unless otherwise agreed between purchaser and manufacturer, the pitch of the helix shall be 25 mm (1 in) maximum per probe.

A.1.4 By agreement between purchaser and manufacturer, the testing shall be in either one or both directions of beam travel. ISO 26Standard notch width

https://standards.iteh.ai/catalog/standards/sist/bface116-239d-4187-91cd-1 mm (0.04 in) maximum for tubes up to and including 3e56183a7549/iso_2604-2(1975) mm (1 in) thick.

50 mm (2 in) minimum

internal notches shall be used.

when the D/a ratio is less than 4.

Standard notch length (at full depth)

manufacturer's option.

A.2.2.2 Length

used.

A.2 CALIBRATION STANDARDS

A.2.1 The ultrasonic equipment shall be calibrated using a longitudinal standard notch on the outside and inside surfaces, or the outside surface, of a tubular test piece according to the specification requirements, usually in the "as supplied" condition. If the test piece is machined, the minimum notch depth may be reduced. (See A.2.2.4.3.)

If the tube is of ferritic steel, the test piece shall be of ferritic steel; if the tube is of austenitic steel, the test piece shall be of austenitic steel. The test piece shall have the same nominal diameter and thickness as the tube to be tested.

External and internal standard notches, where used, need not be further apart than a distance sufficient to make the signals distinguishable.

A.2.2 The dimensions of the standard notches shall be as follows :

A.2.2.1 Shape and location

The standard notch shall lie in a longitudinal direction. The sides shall be nominally parallel and the bottom shall be nominally square to the sides.

1,5 mm (0.06 in) maximum for tubes over 25 mm (1 in) thick.

A.2.2.1.1 Over 15 mm (0.59 in) bore, both external and

From 15 mm (0.59 in) bore to 10 mm (0.4 in) bore

inclusive, the internal notch may be used, at the

Below 10 mm (0.4 in) bore, the internal notch shall not be

A.2.2.1.2 The internal standard notch shall not be used

A.2.2.4 Depth

Standard notch depth shall be 5% of the specified thickness, with the following limitations :

A.2.2.4.1 Tolerance on depth : \pm 15 % of standard notch depth with \pm 0,05 mm (\pm 0.002 in) minimum.

A.2.2.4.2 For D/a ratios between 4 and 5 the internal standard notch depth shall be in accordance with table 2.

TABLE 2 - Notch depths

Diameter Thickness	Internal standard notch depth External standard notch depth
5	1
4,75	1,6
4,5	1,9
4,25	2,2
4	2,5

A.2.2.4.3 For all tubes except those in A.2.2.4.4, A.2.2.4.5, and A.2.2.4.6.

Minimum depth : 0,3 mm (0.012 in), except that where the test piece is machined the minimum depth shall be 0,2 mm (0.008 in).

Maximum depth : 1,5 mm (0.06 in).

A.2.2.4.4 Maximum depth for austenitic tubing :

for tubes less than or equal to 50 mm (2 in) thickness : 1,5 mm (0.06 in)

for tubes with thickness greater than 50 mm (2 in) : 3 % of specified thickness.

A.2.2.4.5 For cold-finished austenitic steel tubes, and for ferritic steel tubes containing more than 12% chromium with thickness less than 3 mm (0.12 in), the minimum depth shall be 0,2 mm (0.008 in).

A.2.2.4.6 Tubes for nuclear application

Minimum depth: 0,2 mm (0.008 in) for normal applications, 0,1 mm (0.004 in) for the most severe applications.

Maximum depth : As in A.2.2.4.3 and A.2.2.4.4.

equipment, or the speed of movement of hand-operated equipment, shall be comparable to that used during the test.

A.3.2 If, on checking during production testing, either or both standard notches are not detected, then all tubes tested since the previous check shall be retested after the instrument has been recalibrated.

A.4 ACCEPTANCE

A.4.1 Any tube that does not produce a signal greater than the signal from the standard notch shall be deemed to have passed this test.

A.4.2 Where a signal greater than that from the standard notch is obtained, the imperfection shall be examined for depth which if found to be less than the depth of the standard notch shall be ignored. Its depth shall not be deducted from the thickness.

A.4.3 Imperfections having a depth greater than the standard notch may be removed, provided that the thickness remaining after removal is not less than the permissible minimum. The tube shall then be retested ultrasonically, and if the tube no longer produces a signal greater than the signal from the standard notch, it shall be accepted. Alternatively, the length of tube containing the

A.3 CALIBRATION AND CHECKING OF EQUIPMENT https://statioards.istlefia.com/sistlefia.co

3e56183a7549/iso-2604-2-1975

A.3.1 The ultrasonic equipment shall be adjusted so that it detects the signals from both the internal and external standard notches (or the signal from the external standard notch, where only an external standard notch is used). During calibration, the rotational speed of automatic

A.4.4 Acceptance of a tube shall be the subject of a special agreement between the purchaser and the manufacturer if it can be proved that the defect causing the signal greater than the signal from the standard notch does not penetrate the tube surface.

Ξ
e
5
ğ
2
ja I
Ĕ
-
ē
ø
2
3
ā
ē
문
E.
ŭ
3
ō
5
-
a,
es
÷
ē
<u>e</u>
ž.
0
.2
5
Ē
8
Ē
Ξ.
E.
ğ
텯
5
5
-
ö
Ē
9
£
<u> </u>
Э
ш
1
B
,⊲

	Zooling Indition	·												,		•	e	n	σ		a	π	e	e	a or v									T	T	T				
	rature C								-	-+		_	+	660	720	071	- 720	- 780	- 750		800	750	- 780	- 630	610			+	-				+		-+					
	Tempe	9		•										600	640		670	650	650		200	700	680	084	560	-														
eatment	Cooling condition 10:						n	4	æ							•	ru	e	n	-	س س	a, o	æ	e	ν. °	_					a, or w									
Heat tr	ature						 	0 - 940	0 - 940					UV0	or o	2006	086	- 960 -	- 960	- 880	- 950 - 1 000	- 800	1 070	006 -	920 - 920) min	- 1 100	- 1 100	- 1 100	1100	- 1 100	- 1 070	- 1 100	- 1 100	1100	1 100	100	- 1 100			
	Temper	э.					ΗF	5CA 64	28 Z					000	000	000	930	006	906	850	850 900	750 950	1 020	840 -	880 1) 880 2) 78(950	950	980	950	990	950	950	950	950	950	950	1 000			
	erence leat ment ⁸⁾		SCA, A, N	л, л	SCA,A,N,	N. T	F, A, N	N, R	л. П	F. A. N	SCA,A,N	z	A, A	z -	E E E	-	F + 2	+ 7	+ 7	٩	⊥ ₹ + 7	A T + T	F + 2	⊢ z + z	а + т + л +	a	σ	٥	a	а с	, a	a	a	σ	a	a	a	σ	σ	,
_	ort o treat	8,0	19 HF.	19	19 HF,	19	19 H	17	17	17 H	15 HF	15	15 H	2 12	2 4	2	15	15 a) 15 b) 1	c) 1	15	15 a) 15 b) 1	12 a) 12 b) (12	12 a) b)	z 2	17	17	17	17	17	17	17	17	17	11	17	17	17	17	-
	kpandin Iging te: ease Do	0,6	15	15	15	15	15	12	12	12	10	2	2	2 5	2 9	2	10	<u> </u>		10	01	∞ ∞	80	x	30	15	15	15	15	15	5 1 5	15	15	15	15	15	15	15	15	Ļ
(2	Drift ex and flar (% incr D_0D	< 0,6	12	12	12	12	12	5	5	6	œ	80	8	∞ c	0 0	0	80	∞ ∞		8	ω ∞	99	9	9	ع	6	6	6	6	50 7	n 61	6	6	6	6	6	6	6	6	0
nperature	Bend test D max		4	\$	4	43	43	43	4,3	4.3	\$	\$	6 4	3						·																				
t room ter	lattening test onstant C		0,10	0,10	0,10	0,10	0,10	0,08	0,08	0,08	0.07	0,07	0.07	10'0	10'0	10'0	0,07	0.07		0,07	0,07	0.08 0.08	0,08	0,08	0,08	60.0	60.0	60'0	60'0	60'0	600	60'0	0.09	60'0	60.0	60'0	60 [°] 0	60'0	60'0	000
arties a	× m v in v in	~											+						N		7830	ISNO0	1	ann 1 in	SEL	*^														
cal prof	<u>م بة</u>	2 %	440 25	440 25	480 24	480 24	480 24	530 22	530 22	530 22	580 21	580 21	580 21	510 21 500 22		77 060	610 15	560 20 640 16	640	560 20	560 20 740 18	590 20 740 18	840 15	590 16	840 15	690 30	690 30	690 30	710 30	710 30 600 30	710 30	710 30	690 30	690 30	710 30	110 30	710 30	710 30	710 30	ac loss
Mechanik	ê	mm/N	320 - •	320 - 4	360 - •	360 - 4	360	410 - 5	410 - 1	410 - 5	460 - 5	460 1	460 - 5	490 - (9 000		460 (410 - 1	490 - t	410 -	410 - 1 590 - 1	440	8 - 069	440 5	8 069	490 - 1	490 - 1	490	510	510 -	510 -	510 -	490	490 -	510 -	- 019	510 -	510 -	510 -	480 -
Ĺ	R _{01.0} min.	2 N/mm								lod	3															205	235	235	245	235	235	245	215	215	245	245	245	255	245	205
	R _{eL} ol R _{P0,2} min.91 12)	N/mm	195	195	215	215	215	235	235	7235	265	265	265	285	275	:	275	135 275	275	205	135 390	245 390	435	245	510	175	195	195	205	195	195	205	185	185	205	G 07	205	215	205	165
	anical arties ed for high	e in Table	Y	5,6		e 2			5, 6	217 PU		5,6		0 4 0 4	e e e	5	5, 6	5.6		5,6	5, 6		5,6					5.6			5,6	5, 6					5, 6	9 ['] 9	5.6	ت د
	Mech prope	temperatur					4			ft 730	2 2		_											7	1	-	7	-	~	2			7	7	~	-				
		-	X		4		54.5.6)			54,5,6)		- 17	54,5,51	(40,1	(10		32 (24)	(40)		(24)	(24)		511)						9 - 0	0,80	0,60	≤ 1.4						+ 0,4		.60
	Others				4		> 0,01		375	3.02		-+10	0,0	0.02			.22 - 0, •• ≤ 0.0	0 0 2	5	et ≤ 0,0	er < 0,0		5 - 0,3						10 × C	≷ 2×C	4 × C ≰	10 × C						10 × C 10 × C		1,15 0
					5	6	Almet		-2:19	Alhei		07-0	Almer	-				Ala		Alm.	, ∼i		V 0.2			-	6		^ qN 0	A F	i L	≪ qN C			_	0		A A Q	6	Tic
	ž					DLI			2604	andar		147/12										0,50	0,80	5 - 3,75) 9,5C	0 - 13,0C	0 - 12,0C	0 - 12.0(0 - 13,00	0 - 13,0(0 - 13,0(0 - 14,00	0 - 14.00	0 - 14,5(0 - 14,00	0 - 14,5(0 - 14,00	0 17,5(0 – 22.00	1 35.00
				_		I	i		ISO	loa/et	Bon CA	2/BCC	+	-	2 4		20	0		55	10		20 0,30	3,25	8,5(9,0(8,0(8.Q	9,0	ð 6	0'6	11.0	50 11.0	00 11,54	50 11,0	00 11,00	75 12,0	00 15,51	19.0	30.00
(6,1	ŝ					, al I				i/cata		1002		1.76 0	10 - 94 C		0'20 - 0'	1 06 0		0,45 - 0,1	0,90 - 1,		0,80 - 1,										2.00 - 2.	2,50 – 3,	2,00 - 2,	2,50 - 3,	2,00 - 2,	1,60 2,		
on, % 1.5		7			10	2	,			itoh (1	1	1 10	2	0,60	2 50		6,00	10,00	14,0	12,50	1		19,00	19,00	20.00	19,00	19,00	20,00	20,00	18,50	18,50	18,50	18,50	18,00	17,50	26.00	23.00
mpositic	5	(arde					0 70		0,30	- 00 2		4,00 -	8,00	- 9'11	10,00 -			17,00 -	17,00 -	17.00	17,00 -	17,00 -	17,00 -	16.00 ~	16,00	16,00 -	16,00 -	16,00 -	16,00 -	15,50	24.00 -	19 00 -
mical co	s rational second		0,050	0,050	0,045	0,045	0,045	0,045	0,045	0.045	0.045	0.045	0,045	0,045			0,040	0.040		0,030	0,030	0,030	0,030	0,040	0,040	0,030	0,030	0.030	0,030	0,030	0,030	0.030	0.030	0,030	0,030	0,030	0,030	0,030	0,030	0.030
che	a ≚e E		0,050	0,050	0,045	0,045	0,045	0,045	0,045	0,045	0,045	0.045	0.045	0,045	0000		0,040	0.040		0,030	0,030	0,040	0,030	0,040	0,040	0,045	0,045	0.045	0,045	0,045	0,045	0,045	0,045	0,045	0,045	0,045	0,045	0,045	0.045	0.045
	Ť		10 0,70	0 - 0,70	00 - 0,80	0 - 0,80	0 - 1,00	0 - 1,20	0 - 1,20	1, 20 <u>4</u>	30 - 1.40	80 - 1.40	80 - 1,40	09.1 - 08.0			0 0,70	0 - 0 20		09'0 - 0	0 0,60	\$ 1,00	< 1,00	10 - 0,80	30 - 0,80	< 2,00	≤ 2,00	≤ 2.00	≤ 2,00	≤ 2,00	≤ 2,00	≤ 2.00	≤ 2.00	≤ 2,00	≤ 2,00	≤ 2,00	00 - 2,00	00 1,50	≤ 2,00	< 150
			E'0	0,4	35 0,4	35 0.4	35 0,4	35 0,4	35 0,4	35 0,6	35 0.6	35 0.8	35 0.6	3,0 35.0	1 3 P 0 4	50 60'n	0,35 0,4	0.4		50 0,3	1,00 0,3	00	50	0,35 0,3	0,30 0,5	00	00	.75	8	8	0,80	0,80	00	00	8	00)'l q/.	0,60 1,6	75	ę
	ō				× 0 %	×0 >	× 0.5	;'0 ≫	< 0,5	× 0,1	\$ 0.5	:0≯	×0 ×	0 0 0		- 01 '0 0	8 0,10	40 ×		1'0 ×	0,25 -)'1 ≫	3 < 0,1	0,15 -	0,15 -	1	1.8	.0 ≽ 6	, ,		0 0,20 -	0 0,20	× 1,	, ,	₹ 1,	₹,	,0 ≷ 6	0 0,30	≤ 0,	
	U		≤ 0,16	≤ 0,16	≤ 0,17	\$ 0.17	≤ 0.17	≤ 0,21	< 0,21	< 0,19	s. 0.22	≈ 0.22	≤ 0.20	0,23		10-010	0,10 - 0,11	1 0 - 80 (≤ 0,15	< 0,15	≤ 0,08	0,17 - 0,2:	≤ 0,15	≤ 0,13	< 0,03	≤ 0.07	0.04 - 0.0	≤ 0,08	≤ 0,08	0,04 - 0,1	0,04 - 0,1	≤ 0.03	≤ 0.03	≤ 0,07	≤ 0.07	0.04 - 0.0	0,04 0,1	≤ 0.15	010
	Steet No.		TS 1	TS 2	1S 4	TS 5	TS 6	TS 9	TS 9H	TS 10	TS 13	TS 14	TS 15	15 18	10 20	76 61	TS 33	10.34		TS 37	TS 38	6£ S1	TS 40	TS 43	TS 45	TS 46	TS 47	TS 48	TS 50	TS 53	TS 54	TS 56	TS 57	TS 58	TS 60	TS 61	1S 63	TS 67	TS 68	TS 69