INTERNATIONAL STANDARD

Second edition 2019-03

Plain bearings — Tolerances —

Part 1: **Fits**

Paliers lisses — Tolérances —

Partie 1: Ajustements

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 12129-1:2019 https://standards.iteh.ai/catalog/standards/sist/49380322-56aa-4986-bfd0-2dfa7eae631c/iso-12129-1-2019

Reference number ISO 12129-1:2019(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 12129-1:2019</u> https://standards.iteh.ai/catalog/standards/sist/49380322-56aa-4986-bfd0-2dfa7eae631c/iso-12129-1-2019

COPYRIGHT PROTECTED DOCUMENT

© ISO 2019

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Fax: +41 22 749 09 47 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Page

Contents

Fore	word	iv
Intro	oduction	v
1	Scope	
2	Normative references	
3	Terms and definitions	
4	System of fits	
5	Mean relative bearing clearance	2
6	Tolerance intervals6.1Tolerance6.2Fundamental deviation6.3Number6.4Symbol	2 2 2 3 3 3
7	Ranges of nominal dimensions	
8	Limit deviations	
9	Minimum and maximum clearances	
10	Example	
Bibli	iography iTeh STANDARD PREVIEW	

(standards.iteh.ai)

ISO 12129-1:2019 https://standards.iteh.ai/catalog/standards/sist/49380322-56aa-4986-bfd0-2dfa7eae631c/iso-12129-1-2019

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see <u>www.iso</u> .org/iso/foreword.html. (standards.iteh.ai)

This document was prepared by Technical Committee ISO/TC 123, *Plain bearings*, Subcommittee SC 3, *Dimensions, tolerances and construction details*. ISO 12129-1:2019 https://standards.iteh.ai/catalog/standards/sist/49380322-56aa-4986-bfd0-

This second edition cancels and replaces the **first edition** (**ISO 1212921**:1995), which has been technically revised. The main changes compared to the previous edition are as follows:

- the title has been improved;
- normative references have been updated;
- <u>Table 1</u> has been corrected;
- <u>Table 2</u> has been added.

A list of all parts in the ISO 12129 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

Introduction

This document has been established because it is not possible to use the ISO deviations given in ISO 286-1 and ISO 286-2 to develop clearance fits which correspond to the requirements of plain bearing engineering for approximately uniform mean relative bearing clearances for all nominal size ranges.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 12129-1:2019 https://standards.iteh.ai/catalog/standards/sist/49380322-56aa-4986-bfd0-2dfa7eae631c/iso-12129-1-2019

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 12129-1:2019 https://standards.iteh.ai/catalog/standards/sist/49380322-56aa-4986-bfd0-2dfa7eae631c/iso-12129-1-2019

Plain bearings — Tolerances —

Part 1: **Fits**

1 Scope

This document specifies a system of fits applicable to metallic plain bearings used in general engineering for mean relative bearing clearances, ψ_m , of 0,56 ‰ up to 3,15 ‰. Other clearance ranges can be used depending upon the requirements in specific applications.

This system of fits is not applicable to half-bearings and bushes which, due to their special characteristics, are not measured by diameter but by wall thickness, and which are dimensionally changed on assembly. It is not applicable to profile bore or tilting pad bearings, or to cases where specific tolerances have been established by consideration of the bearing performance at both extremes of clearance.

This document is applicable preferably to rotating machine parts and shafting, but it can be used similarly in other ranges of application.

2 Normative references **TANDARD PREVIEW**

There are no normative references in this document.

ISO 12129-1:2019

3 Terms and definitions.iteh.ai/catalog/standards/sist/49380322-56aa-4986-bfd0-

2dfa7eae631c/iso-12129-1-2019 No terms and definitions are listed in this document.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at <u>https://www.iso.org/obp</u>
- IEC Electropedia: available at http://www.electropedia.org/

4 System of fits

The system of fits specified in this document is a normal system of fits, in which the fundamental deviation H of the bearing bore diameter is in accordance with ISO 286-2. The tolerance interval of the shaft is correlated to correspond to the mean relative bearing clearance, ψ_m .

5 Mean relative bearing clearance

The mean relative bearing clearance, ψ_m , in per thousand (‰), of a range of nominal dimensions is given by Formula (1):

$$\psi_{\rm m} = \frac{C_{\rm D,m}}{D_{\rm m}} \tag{1}$$

where $C_{D,m}$ is the mean absolute bearing diametral clearance, in micrometres.

$$C_{\rm D,m} = \frac{C_{\rm D,max} + C_{\rm D,min}}{2} \tag{2}$$

where

*C*_{D,max} is the maximum value of the absolute bearing diametral clearance;

C_{D,min} is the minimum value of the absolute bearing diametral clearance;

 $D_{\rm m}$ is the arithmetic mean of the range of nominal dimensions, in millimetres.

EXAMPLE

For the nominal dimension range from 250 mm to 280 mm, the arithmetic mean of the range of nominal dimensions is given by

$$D_{\rm m} = \frac{250 + 280}{2} \rm{mm} = 265 \, \rm{mm}$$
(standards.iteh.ai)

For $\psi_m = 1,6 \%$, Table 1 and Formula (2) lead then to the mean bearing diametral clearance

$$C_{\rm D,m} = \frac{0,466+0,382}{2} \text{ mm} = 0,424 \text{ mm}$$
 https://standards.iteh.ai/catalog/standards/sist/49380322-56aa-4986-bfd0-2dfa7eae631c/iso-12129-1-2019

and to the mean relative bearing clearance

$$\psi_{\rm m} = \frac{0,424}{265} = 1,6 \%_0$$

6 Tolerance intervals

6.1 Tolerance

The tolerance is chosen so that, for a uniform mean relative bearing clearance, ψ_m , in each case from the minimum to the maximum range of nominal dimensions, an approximately uniform maximum deviation from the relative bearing clearance within a tolerance interval is not exceeded. The lower limit is dictated by economy and methods of production.

The tolerance interval of the shaft in each case is smaller by one IT grade (basic tolerance grade in accordance with ISO 286-1) than the tolerance interval of the correlated bearing bore.

6.2 Fundamental deviation

The fundamental deviation is determined by the mean relative bearing clearance, $\psi_{\rm m}$.

6.3 Number

Each of the following values of $\psi_{\rm m}$, in per thousand, corresponds to one tolerance interval:

- 0,56;
- 0,8;
- 1,12;
- 1,32;
- 1,6;
- 1,9;
- 2,24;
- 3,15.

6.4 Symbol

The symbol for the mean relative bearing clearance is ψ_m . If Greek letters are not available, the symbol C^* may be used instead of the Greek letter ψ .

7 Ranges of nominal dimensions DARD PREVIEW

The ranges of nominal dimensions are more closely stepped than in ISO 286-2 so that the maximum deviation from the mean relative bearing clearance, ψ_m , can be more closely adhered to.

<u>ISO 12129-1:2019</u> Limit deviations^{standards.iteh.ai/catalog/standards/sist/49380322-56aa-4986-bfd0-2dfa7eae631c/iso-12129-1-2019}

Zula/eaco31c/B0-12129-1-2

The limit deviations for the shafts are given in <u>Table 1</u>.

9 Minimum and maximum clearances

The minimum and maximum clearances between the shaft and bearing bore, together with the limit deviations for the shaft which are required for the calculation of the plain bearings, are given in <u>Table 1</u>.

The corresponding tolerance intervals of the relative bearing clearance are given in Table 2.

10 Example

Shaft fit dimension 200 mm for a mean bearing clearance $\psi_{\rm m}$ = 1,12 ‰.

Preferred form:

Ø**200**_{\U03c0 1,12}

Alternative form where Greek letters are not available:

Ø**200**C* 1,12

Alternative form where subscripts are not available:

Ø200 (C* 1,12)