INTERNATIONAL STANDARD ISO/IEC 23003-4 Second edition 2020-06 # Information technology — MPEG audio technologies — Part 4: **Dynamic range control** Technologies de l'information — Technologies audio MPEG — Partie 4: Contrôle de gamme dynamique # (https://standards.iteh.ai) **Document Preview** ISO/IEC 23003-4:2020 https://standards.iteh.ai/catalog/standards/iso/d91aac57-9be8-401d-a47b-ea12c1b901f9/iso-jec-23003-4-2020 # iTeh Standards (https://standards.iteh.ai) Document Preview ISO/IEC 23003-4:2020 https://standards.iteh.ai/catalog/standards/iso/d91aac57-9be8-401d-a47b-ea12c1b901f9/iso-iec-23003-4-2020 #### **COPYRIGHT PROTECTED DOCUMENT** © ISO/IEC 2020 All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Fax: +41 22 749 09 47 Email: copyright@iso.org Website: www.iso.org Published in Switzerland ### **Contents** Page | Forew | ord | vi | |--------|--|-----| | Introd | uction | vii | | 1 | Scope | 1 | | 2 | Normative references | 1 | | 3 | Terms, definitions and mnemonics | 1 | | 3.1 | Terms and definitions | 1 | | 3.2 | Mnemonics | 3 | | 4 | Symbols (and abbreviated terms) | 3 | | 5 | Technical overview | 4 | | 6 | DRC decoder | 6 | | 6.1 | DRC decoder configuration | 6 | | 6.1.1 | Overview | 6 | | 6.1.2 | Description of logical blocks | 7 | | 6.1.3 | Derivation of peak and loudness values | 12 | | 6.2 | Dynamic DRC gain payload | | | 6.3 | DRC set selection | 16 | | 6.3.1 | Overview | 16 | | 6.3.2 | Pre-selection based on Signal Properties and Decoder Configuration | | | 6.3.3 | Selection based on requests | | | 6.3.4 | Final selection | | | 6.3.5 | Applying multiple DRC sets | | | 6.3.6 | Album mode | | | 6.3.7 | Ducking 180/16C 23003-4:2020 | | | 6.3.8 | Precedence log/standards/iso/d91aac57-9be8-401d-a47b-ea12c1b901f9/iso- | | | 6.4 | Time domain DRC application | | | 6.4.1 | Overview | | | 6.4.2 | Framing | | | 6.4.3 | Time resolution | _ | | 6.4.4 | Time alignment | | | 6.4.5 | Decoding | | | 6.4.6 | Gain modifications and interpolation | | | 6.4.7 | Spline interpolation | | | 6.4.8 | Look-ahead in decoder | | | 6.4.9 | Node reservoir | | | | Applying the compression | | | | Dynamic equalization | | | | Multi-band DRC filter bank | | | 6.5 | Sub-band domain DRC | | | 6.6 | Generation of DRC gain values at the decoder | | | 6.6.1 | Overview | | | 6.6.2 | Description of logical blocks | | | 6.6.3 | Algorithmic details | | | 6.6.4 | Combining parametric and non-parametric DRCs | | | 6.7 | Loudness equalization support | | | 6.8 | Equalization tool | 62 | ### ISO/IEC 23003-4:2020(E) | 6.8.1 | Overview | 62 | |----------------|--|-----| | 6.8.2 | EQ payloads | 62 | | 6.8.3 | EQ filter elements | 63 | | 6.8.4 | EQ set selection | 64 | | 6.8.5 | Application of EQ set | 64 | | 6.9 | Complexity management | 72 | | 6.9.1 | General | 72 | | 6.9.2 | DRC and downmixing complexity estimation | | | 6.9.3 | EQ complexity estimation | 74 | | 6.10 | Loudness normalization | 75 | | 6.10.1 | Overview | 75 | | | Loudness normalization based on target loudness | | | 6.11 | DRC in streaming scenarios | | | | DRC configuration | | | | Error handling | | | 6.12 | DRC configuration changes during active processing | | | 0.12 | | | | 7 | Syntax | | | 7.1 | Syntax of DRC payload | 81 | | 7.2 | Syntax of DRC gain payload | 81 | | 7.3 | Syntax of static DRC payload | 82 | | 7.4 | Syntax of DRC gain sequence | 109 | | 7.5 | Syntax of parametric DRC tool | 110 | | 7.6 | Syntax of equalization tools | 117 | | _ | | | | 8 | Reference software | | | 8.1 | Reference software structure | | | 8.1.1 | General | | | 8.2 | Bitstream decoding software | | | 8.2.1 | General MPEG-D DRC decoding software | 131 | | 8.2.2 | MPEG-D DRC decoding software | 132 | | 9 | Conformance | 132 | | 9.1 | General | _ | | 9.2 | Conformance testing | | | 9.2.1 | Conformance test data and test procedure | | | 9.2.1
9.2.2 | Naming conventions | | | 9.2.2
9.2.3 | File format definitions | | | | Encoder Conformance for MPEG-D DRC bitstreams | | | 9.3 | | | | 9.3.1 | Characteristics and test procedure | | | 9.3.2 | Configuration payload | | | 9.3.3 | Interface payload | | | 9.3.4 | Frame Payload | | | 9.3.5 | Requirements depending on profiles and levels | | | 9.4 | Decoder conformance test categories and conditions | | | 9.4.1 | General | | | 9.4.2 | Conformance test categories | | | 9.4.3 | Conformance test conditions | 158 | | Annex | A (normative) Tables | 167 | | Annex | B (normative) External Interface to DRC tool | 207 | | Annex | C (informative) Audio codec specific information | 220 | | Annex D (informative) | DRC gain generation and encoding | 225 | |-----------------------|---|-----| | Annex E (informative) | DRC set selection and adjustment at decoder | 236 | | Annex F (informative) | Loudness normalization | 243 | | Annex G (informative) | Peak limiter | 244 | | Annex H (informative) | Equalization | 249 | | Annex I (normative) P | rofiles and levels | 251 | | Annex J (informative) | Reference software disclaimer | 260 | | Annex K (informative) | Reference software | 261 | | Bibliography | | 262 | ## iTeh Standards (https://standards.iteh.ai) Document Preview ISO/IEC 23003-4:2020 https://standards.iteh.ai/catalog/standards/iso/d91aac57-9be8-401d-a47b-ea12c1b901f9/iso-iec-23003-4-2020 #### Foreword ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents) or the IEC list of patent declarations received (see https://patents.iec.ch). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/foreword.html. This document was prepared by Joint Technical Committee ISO/IEC JTC 1, *Information Technology*, Subcommittee SC 29, *Coding of audio, picture, multimedia, and hypermedia*. This second edition cancels and replaces the first edition (ISO 23003-4:2015), which has been technically revised. It also incorporates the Amendments ISO 23003-4:2015/Amd.1:2017 and ISO 23003-4:2015/Amd.2:2017. The main changes compared to the previous edition are as follows: Amendments to the previous edition that include enhancements, definitions of profiles and levels, reference software, and conformance are integrated. A list of all parts in the ISO/IEC 23003 series can be found on the ISO website. Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html. #### Introduction Consumer audio systems and devices are used in a large variety of configurations and acoustical environments. For many of these scenarios, the audio reproduction quality can be improved by appropriate control of content dynamics and loudness. This document provides a universal dynamic range control tool that supports loudness normalization. The DRC tool offers a bitrate efficient representation of dynamically compressed versions of an audio signal. This is achieved by adding a low-bitrate DRC metadata stream to the audio signal. The DRC tool includes dedicated sections for clipping prevention, ducking, and for generating a fade-in and fade-out to supplement the main dynamic range compression functionality. The DRC effects available at the DRC decoder are generated at the DRC encoder side. At the DRC decoder side, the audio signal may be played back without applying the DRC tool, or an appropriate DRC tool effect is selected and applied based on the given playback scenario. Loudness normalization is fully integrated with DRC and peak control to avoid clipping. A metadata-controlled equalization tool is provided to compensate for playback scenarios that impact the spectral balance, such as downmix or DRC. Furthermore, the DRC tool supports metadata-based loudness equalization to compensate the effect of playback level changes on the spectral balance. The International Organization for Standardization (ISO) and International Electrotechnical Commission (IEC) draw attention to the fact that it is claimed that compliance with this document may involve the use of a patent. ISO and IEC take no position concerning the evidence, validity and scope of these patent rights The holders of these patent rights have assured ISO and IEC that they are willing to negotiate licences under reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the statements of the holders of these patent rights are registered with ISO and IEC. Information may be obtained from the patent database available at www.iso.org/patents. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights other than those in the patent database. ISO and IEC shall not be held responsible for identifying any or all such patent rights. # iTeh Standards (https://standards.iteh.ai) Document Preview ISO/IEC 23003-4:2020 https://standards.jteh.aj/catalog/standards/jso/d91aac57-9be8-401d-a47b-ea12c1b901f9/jso-jec-23003-4-2020 ### Information technology — MPEG audio technologies — #### Part 4: ### **Dynamic range control** #### 1 Scope This document specifies technology for loudness and dynamic range control. It is applicable to most MPEG audio technologies. It offers flexible solutions to efficiently support the widespread demand for technologies such as loudness normalization and dynamic range compression for various playback scenarios. #### 2 Normative references The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO/IEC 14496-12, Information technology — Coding of audio-visual objects — Part 12: ISO base media file format ISO/IEC 14496-26:2010, Information technology — Coding of audio-visual objects — Part 26: Audio Conformance ISO/IEC 23008-3:2019, Information technology — High efficiency coding and media delivery in heterogeneous environments — Part 3: 3D audio ISO/IEC 23091-3, Information technology — Coding-independent code points — Part 3: Audio #### 3 Terms, definitions and mnemonics #### 3.1 Terms and definitions For the purposes of this document, the terms and definitions given in ISO/IEC 14496-12 and the following apply. ISO and IEC maintain terminological databases for use in standardization at the following addresses: - ISO Online browsing platform: available at https://www.iso.org/obp - IEC Electropedia: available at http://www.electropedia.org/ #### 3.1.1 #### **DRC** sequence series of DRC gain values that can be applied to one or more audio channels #### 3.1.2 #### **DRC** set defined set of DRC sequences that produce a desired effect if applied to the audio signal #### 3.1.3 #### album collection of audio recordings that are mastered in a consistent way Note 1 to entry: Traditionally, a collection of songs released on a Compact Disk belongs into this category, for example. #### 3.1.4 #### conformance test bitstream bitstream used for testing the conformance of MPEG-D DRC compliant audio decoders #### 3.1.5 #### conformance test case conformance test category and a combination of one or more conformance test conditions for which a conformance test sequence is provided #### 3.1.6 #### conformance test condition condition which applies to properties of a conformance test sequence in order to test a certain functionality of the MPEG-D DRC decoder #### 3.1.7 #### conformance test criteria one or more conformance test tools and corresponding parameters applied to verify the conformance for a certain conformance test sequence #### 3.1.8 #### conformance test sequence set of a conformance test bitstream, a decoder setting, an input audio file and a corresponding reference file #### 3.1.9 #### decoder input parameters input parameters that are supplied to an MPEG-D DRC decoder in addition to a conformance test bitstream, a decoder interface bitstream and an input audio file #### 3.1.10 #### decoder setting combination of a decoder interface bitstream and decoder input parameters that are supplied to an MPEG-D DRC decoder #### 3.1.11 #### input DRC set selection parameters input parameter set for testing of a DRC gain decoder instance Note 1 to entry: This parameter set is solely used for conformance testing in the context of the DRC gain decoder conformance test category (DrcGainDec). #### 3.1.12 #### reference audio file decoded counterpart of a conformance test bitstream, a decoder setting and an input audio file #### 3.1.13 #### reference DRC set selection parameters decoded counterpart of a conformance test bitstream and a decoder setting fed to the DRC set selection process Note 1 to entry: This parameter set is an intermediate result of an MPEG-D DRC compliant decoder implementation solely used for conformance testing in the context of the DRC selection process test category (DrcSelProc). #### 3.1.14 #### reference file reference audio file or reference DRC set selection parameters #### 3.2 Mnemonics bslbf bit string, left bit first, where "left" is the order in which bit strings are written in the ISO/IEC 14496 series NOTE Bit strings are written as a string of 1s and 0s within single quote marks, for example '1000 0001'. Blanks within a bit string are for ease of reading and have no significance. byte_align() number of bits to fill for byte alignment at the offset of *n* bits: byte_align(n) = 8 ceil (n/8) – n uimsbf unsigned integer, most significant bit first vlclbf variable length code, left bit first, where "left" refers to the order in which the variable length codes are written bit(n) a bit string with n bits in the same format as bslbf unsigned int(n) an unsigned integer with n bits in the same format as uimsbf signed int(n) a signed integer with n bits, most significant bit first mod modulo operator: $(x \mod y) = x-y$ floor (x/y) size of x size operator that returns the bit size of a field x TRUE/FALSE values of Boolean data type, which correspond to numerical 1 and 0, respectively #### 4 Symbols *a*_i filter coefficient b band index of DRC filter bank (starting at 0) *b*_i filter coefficient deltaTmin smallest permitted DRC gain sample interval in units of the audio sample interval #### ISO/IEC 23003-4:2020(E) | f_c | cross-over frequency in Hz | | | |----------------------|--|--|--| | $f_{c,norm}$ | cross-over frequency expressed as fraction of the audio sample rate | | | | $f_{c,norm,SB}(s)$ | cross-over frequency of audio decoder sub-band <i>s</i> expressed as fraction of the audio sample rate | | | | | NOTE The cross-over frequency is the upper band edge frequency of the subband. | | | | f_{s} | audio sample rate in Hz | | | | | NOTE If an audio decoder is present, it is the sample rate of the decoded time-domain audio signal. | | | | M_{DRC} | DRC frame size in units of the audio sample interval $1/f_s$ | | | | N_{DRC} | maximum permitted number of DRC samples per DRC frame | | | | | NOTE Identical to the number of intervals with a duration of <i>deltaTmin</i> per DRC frame. | | | | N_{Codec} | codec frame size in units of the audio sample interval $1/f_s$ | | | | π | ratio of a circle's circumference to its diameter | | | | S | audio decoder sub-band index (starting at 0) | | | | Z | complex variable of the z-transform | | | ## Technical overview g/standards/iso/d91aac57-9be8-401d-a47b-ea12c1b901f9/iso-iec-23003-4-2020 The technology described in this document is called the "DRC tool". It provides efficient control of dynamic range, loudness, and clipping based on metadata generated at the encoder. The decoder can choose to selectively apply the metadata to the audio signal to achieve a desired result. Metadata for dynamic range compression consists of encoded time-varying gain values that can be applied to the audio signal. Hence, the main blocks of the DRC tool include a DRC gain encoder, a DRC gain decoder, a DRC gain modification block, and a DRC gain application block. These blocks are exercised on a frameby-frame basis during audio processing. In addition to encoded time-varying gain values, the DRC gain decoder can also receive parametric DRC metadata for generation of time-varying gain values at the decoder. Various DRC configurations can be conveyed in a separate bitstream element, such as configurations for a downmix or combined DRCs. The DRC set selection block decides based on the playback scenario and the applicable DRC configurations which DRC gains to apply to the audio signal. Moreover, the DRC tool supports loudness normalization based on loudness metadata. A typical system for loudness and dynamic range control in the time domain is shown in Figure 1. A more complex system including downmixer and peak limiter is shown in Figure 2. The decoder part of the DRC tool is driven by metadata that efficiently represents the DRC gain samples and parameters for interpolation. The gain samples can be updated as fast as necessary to accurately represent gain changes down to at least 1 ms update intervals. In the following, the decoder part of the DRC tool is referred to as "DRC decoder", which includes everything except the audio decoder and associated bitstream de-multiplexing. Figure 1 — Block diagram of a typical system with audio decoder and DRC tool modules to achieve loudness normalization (LN) and dynamic range control Figure 2 — Block diagram of a more complex system including downmixer and peak limiter (TD = time-domain, SD = subband-domain) The DRC tool provides support for loudness equalization, sometimes called "loudness compensation", that can be applied to compensate for the effect of the playback level on the spectral balance. For this purpose, time-varying loudness information can be recovered from DRC gain sequences to dynamically control the compensation module. While the compensation module is out of scope, the interface describes in which frequency ranges the loudness information should be applied. A flexible tool for generic metadata-controlled equalization is provided. The tool can be used to reach the desired spectral balance of the reproduced audio signal depending on a wide variety of playback scenarios, such as downmix, DRC, or playback room size. It can operate in the sub-band domain of an audio decoder and in the time domain. The DRC tool is specified in Clause 6. The tool may be subject to profiles and levels that shall be in accordance with Annex I. The bitstream field decoding of the DRC tool shall be in accordance with Annex A. If an interface for external parameter control of the DRC tool is used, it shall conform to Annex B. #### 6 DRC decoder #### 6.1 DRC decoder configuration #### 6.1.1 Overview The DRC configuration information can be received in-stream using the static payloads uniDrcConfig() and loudnessInfoSet() described below, or it can be delivered by a higher layer, such as in ISO/IEC 14496-12 (see Table 1). The basic decoding process of the static information is virtually the same. The difference consists mainly in a few syntax changes and reduced field sizes to increase the bit rate efficiency of the in-stream configuration. The syntax of the in-stream static payload is given in 7.3. The associated metadata encoding is given in A.6. The static DRC payload is evaluated once at the beginning of the decoding process and it is monitored subsequently. For static DRC payload changes during playback, see 6.12. Table 1 — Overview of configuration (setup) and separate metadata track in ISO/IEC 14496-12 | | Sample entry
code | Setup
(in sample entry) | Track reference | Sample format | |-------------------|---|---|--|---| | Audio
track | As specified for the audio codec in use (unchanged) | DRCInstructions box using negative values for drcLocation | "adrc" referring to the
metadata tracks
carrying gain values | As specified for the audio codec in use (unchanged) | | Metadata
track | "unid" | (none) | 10121 (none) | Each sample is a uniDrcGain() payload | The static payload is divided into several logical blocks: - channelLayout(); - downmixInstructions(), downmixInstructionsV1(); - drcCoefficientsBasic(), drcCoefficientsUniDrc(), drcCoefficientsUniDrcV1(); - drcInstructionsBasic(), drcInstructionUniDrc(), drcInstructionUniDrcV1(); - loudnessInfo(), loudnessInfoV1(); - drcCoefficientsParametricDrc(); - parametricDrcInstructions(); - loudEqInstructions(); - eqCoefficients(); - eqInstructions(). Except for the channelLayout(), drcCoefficientsParametricDrc(), and eqCoefficients(), multiple instances of a logical block can appear. The DRC decoder combines the information of the matching instances of the logical blocks for a given playback scenario. Matching instances are found by matching several identifiers (labels) contained in the blocks.