

INTERNATIONAL STANDARD

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION MEЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ ORGANISATION INTERNATIONALE DE NORMALISATION

Copper and copper alloys – Estimation of average grain size

First edition – 1973-09-01

iTeh STANDARD PREVIEW (standards.iteh.ai)

and an official and a second secon second sec

ISO 2624:1973

https://standards.iteh.ai/catalog/standards/sist/0cc40a27-1f63-4bb9-8608-60c4b9aa01c9/iso-2624-1973

an an The Appendia The Appendia The Appendia The Appendia The Appendia

1.1 L

en en la contra de l

and the state of the

UDC 669.3 : 620.18

Ref. No. ISO 2624-1973 (E)

Descriptors : copper, copper alloys, grain size analysis, microstructure, grain structure, microscopy, microphotography.

FOREWORD

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO Member Bodies). The work of developing International Standards is carried out through ISO Technical Committees. Every Member Body interested in a subject for which a Technical Committee has been set up has the right to be represented on that Committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the Technical Committees are circulated to the Member Bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 2624 was drawn up by Technical Committee ISO/TC 26, Copper and copper alloys, and circulated to the Member Bodies in November 1971.

Hungary

India

Japan

Norway

Portugal

Romania

South Africa, Rep. of

It has been approved by the Member Bodies of the following countries :3 https://standards.iteh.ai/catalog/standards/sist/0cc40a27-1f63-4bb9-8608-

Austria Belgium Canada Chile Czechoslovakia Denmark Egypt, Arab Rep. of France Germany

60c4b9as01c9/iso-2624-1973 Sweden Switzerland Netherlands Thailand New Zealand Turkey United Kingdom U.S.A. U.S.S.R.

No Member Body expressed disapproval of the document.

© International Organization for Standardization, 1973 •

Printed in Switzerland

Copper and copper alloys - Estimation of average grain size

0 INTRODUCTION

On a section of metal, a grain is that area within the boundary of a crystal. For the purpose of applying the methods described in this International Standard, a crystal and its twin bands are considered as one grain. Sub-grains, minor constituent phases, inclusions and additives are not considered in the estimation of the grain size.

It is important, in using these methods, to recognize that the estimation of grain size is not a precise measurement. A D metal structure is an aggregate of three-dimensional crystals of varying sizes and shapes. Even if all these crystals were identical in size and shape, the grain cross-sections produced by a random plane (surface of observation).

through such a structure would have a distribution of areas 1273 varying from a maximum value to zero, depending upon where the plane cuts each individual crystal.⁴ Clearly, no⁻²⁶²⁴3¹⁹TEST SAMPLES two fields of observation can be exactly the same.

Practical reasons limit the number of grains that can reasonably be counted to less than the number statistically desirable.

1 SCOPE AND FIELD OF APPLICATION

This International Standard specifies three procedures for estimating, and rules for expressing, the average grain size of copper and copper alloys consisting principally of a single phase. The respective procedures are termed the comparison procedure, the intercept procedure and the planimetric procedure.

The comparison procedure (comparing the specimen with a standard chart) is most convenient and is sufficiently accurate for most commercial purposes.

Higher degrees of accuracy in estimating grain size are obtainable by using the intercept (Heyn) or planimetric (Jeffries) procedures. In cases of dispute, it is recommended that the use of one of these procedures be agreed between the parties.

For material with non-equiaxed structures it is recommended that the intercept procedure be used.

2 SYMBOLS AND DESIGNATIONS

Symbol	Designation							
f	Jeffries' multiplier used to obtain number of grains per square millimetre by planimetric method							
m	Number of grains per square millimetre							
REVIE	Average grain "diameter" in millimetres; an arbitrary measure defined as $1/\sqrt{m}$							
h.ai)	Average intercept length							
м	Magnification							

3.1 Grain size estimations shall be made on three or more representative fields of each sample section. In known equiaxed structures only a representative section need be taken on the sample. For non-equiaxed or unknown structures three sections must be prepared each at right angles to the other.

3.2 The specimen shall be carefully prepared to reveal the grain boundaries using a contrast etch to match the standard charts.

4 PROCEDURES

4.1 Comparison procedure

The estimation of grain size is made by direct comparison of a projected image of a photomicrograph of a representative field of the test specimen, either with the photomicrographs of the standard grain size series or with suitable reproductions of them (for standard grain size charts, see the Annex); when a projection microscope is not available a bench microscope may be used. It is recommended that, to facilitate comparison, mechanical arrangements be made to permit bringing the standard photomicrographs successively into juxtaposition with the projected image.

4.2 Intercept procedure

4.2.1 The grain size is estimated by counting, on the ground glass screen of a projection microscope, on the image in a bench microscope fitted with a graticule, on a photomicrograph of a representative field of the specimen, or on the specimen itself, the number of grains intercepted by one or more straight lines sufficiently long to yield at least 10 intercepts per line and at least 50 intercepts for all lines for normal purposes and at least 200 intercepts for referee purposes. Grains touched by the end of the line count only as half grains. The length of the line or lines in millimetres at the surface of the section, divided by the number of grains intersected by it, gives the average intercept length /. For practical purposes, the average intercept length / may be regarded as equal to the average grain diameter d^{1} . 111 J. N

4.2.2 For non-equiaxed structures, measurements should be made on longitudinal and transverse sections along lines that lie in all three principal directions of the specimen. For each direction, the average grain "diameters" should be calculated as in 4.2.1.

4.3 Planimetric procedure

square millimetre, m.

4.3.1 In the planimetric procedure, a circle or rectangle of DARD PREV known area (usually 5000 mm² to simplify the calculation) is inscribed on a photomicrograph or on the ars screen of the projection microscope.

A magnification should be selected which will give at least ISO 2521:1 Comparison procedure

50 grains for normal purposes and 200 grains for referee standards, purposes in the field to be counted. When the image is all the focused properly, the number of grains within this area should be counted. The sum of all the grains included completely within the known area plus one half the number of grains intersected by the circumference of the area should be taken as giving the number of equivalent whole grains, measured at the magnification used, within the area. If this number is multiplied by Jeffries' multiplier, f, in the second column of Table 1 opposite the appropriate

magnification, the product will be the number of grains per

· ..+

4.3.2 The average grain "diameter" in millimetres, *d*, for each field may then be calculated from the formula $d = 1/\sqrt{m}$

TABLE 1 - Jeffries' multipliers for area of 5 000 mm²

Magnification used, M	Jeffries' multiplier, <i>f</i> , to obtain grains per mm ²						
1	0,000 2						
10	0,02						
25	0,125						
50	0,5						
75*	1,125						
100	2,0						
150	4,5						
200	8,0						
250	12,5						
300	18,0						
500	50,0						
750	112,5						
1 000	200,0						

* At 75 diameters magnification, Jeffries' multiplier, f, becomes unity if the area used is 5 625 mm² (a circle of 84,5 mm diameter).

The estimated grain size for each field shall be reported as that of the nearest standard grain size chart (see the Annex). Alternatively, where a single figure is required the median of these results shall be reported.

1f63-4bb9-8608

The charts are reproduced at a magnification of $75 \times$, which is normally suitable for copper and copper alloys. If it is necessary to use other magnifications, the appropriate grain size from Table 2 shall be reported. The values shown in this table have been rounded off to approximate commercial usage.

TABLE 2 — Relationships between the actual grain size of specimens viewed a	t various magnifications
and the standard series of photomicrographs	

Image magnification	Grain size (mm) when image matches standard chart									- 144 - L	:		
75 X (standard)	0,010	0,015	0,020	0,025	0,035	0,045	0,050	0,060	0,070	0,090	0,120	0,150	0,200
25 X	0,030	0,045	0,060	0,080	0,110	0,140	0,150	0,180	0,210	0,270	0,360	0,450	0,600
50 × 100 ×	0,015 0,008	0,020 0,010	0,030 0,015	0,040 0,020	0,050	0,070	0,080	0,090	0,100	0,140	0,180	0,220	0,300 0,150
200 X		0,005	0,007	0,010	0,012	0,017	0,020	0,022	0,025	0,035	0,045	0,055	0,075
500 ×	* 🛄 👘	· · · ·		-	0,005	0,007	0,008	0,009	0,010	0,014	0,018	0,022	0,030

1) To achieve compatibility with estimations of grain "diameter" made by the planimetric or comparison procedure, the intercept length / should be multiplied by the factor 1,13.

Table 2 may be used for comparisons at other magnifications by using the appropriate factor; for example, at $250 \times$ divide by 10 the grain size indicated at $25 \times$, or at $400 \times$ divide by 2 the grain size indicated at $200 \times$. Thus at $250 \times$, a grain size which will match the same standard photograph of 0,050 mm at $75 \times$ will be a 0,015 mm grain size (0,150 at $25 \times$ divided by 10).

It should be appreciated that it is not uncommon for operators to differ by one step in the charts when estimating the grain size of a given field.

5.2 Intercept or planimetric procedures

In equiaxed material, the results for each of the three or more representative fields on which estimations have been made shall be reported. Alternatively, where a single figure is required the median of these results shall be reported.

In non-equiaxed material, when the intercept procedure should be used, the results for each of the three directions shall be reported either for individual fields or as the corresponding median for each direction.

5.3 Mixed grain sizes

These are sometimes encountered, for example in hotworked metal. These shall be expressed by giving the estimated area percentages occupied by the two sizes or the two ranges of sizes, by using the comparison method.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 2624:1973</u>

https://standards.iteh.ai/catalog/standards/sist/0cc40a27-1f63-4bb9-8608-60c4b9aa01c9/iso-2624-1973 ANNEX

STANDARD GRAIN SIZE CHARTS (75 imes)

1 I.

4

П

111

IV

