

SLOVENSKI STANDARD
oSIST prEN IEC 61300-3-3:2023
01-september-2023

Povezovalne naprave in pasivne komponente optičnih vlaken - Postopki osnovnega preskušanja in merjenja - 3-3. del: Preiskovanje in meritve - Aktivno nadzorovanje sprememb pri zmanjševanju in povračilu izgube

Fibre optic interconnecting devices and passive components - Basic test and measurement procedures - Part 3-3: Examinations and measurements - Active monitoring of changes in attenuation and return loss

Lichtwellenleiter - Verbindungselemente und passive Bauteile - Grundlegende Prüf- und Messverfahren - Teil 3-3: Untersuchungen und Messungen - Aufzeichnung der Änderung von Dämpfung und Rückflussdämpfung <https://standards.iteh.ai/catalog/standards/sist/ab388664-d80a-4ca0-b102-5082-8706/issue/161300-3-3-2023>

Dispositifs d'interconnexion et composants passifs à fibres optiques - Méthodes fondamentales d'essais et de mesures - Partie 3-3: Examens et mesures - Contrôle actif des variations de l'affaiblissement et de l'affaiblissement de réflexion

Ta slovenski standard je istoveten z: prEN IEC 61300-3-3:2023

ICS:

33.180.20	Povezovalne naprave za optična vlakna	Fibre optic interconnecting devices
-----------	---------------------------------------	-------------------------------------

oSIST prEN IEC 61300-3-3:2023 **en**

86B/4759/CDV

COMMITTEE DRAFT FOR VOTE (CDV)

PROJECT NUMBER:

IEC 61300-3-3 ED4

DATE OF CIRCULATION:

2023-06-23

CLOSING DATE FOR VOTING:

2023-09-15

SUPERSEDES DOCUMENTS:

86B/4619/CD, 86B/4655A/CC

IEC SC 86B : FIBRE OPTIC INTERCONNECTING DEVICES AND PASSIVE COMPONENTS

SECRETARIAT:	SECRETARY:
Japan	Mr Shigeru Tomita
OF INTEREST TO THE FOLLOWING COMMITTEES:	PROPOSED HORIZONTAL STANDARD:
	<input type="checkbox"/> Other TC/SCs are requested to indicate their interest, if any, in this CDV to the secretary.
FUNCTIONS CONCERNED:	
<input type="checkbox"/> EMC <input type="checkbox"/> ENVIRONMENT	<input type="checkbox"/> QUALITY ASSURANCE <input type="checkbox"/> SAFETY
<input checked="" type="checkbox"/> SUBMITTED FOR CENELEC PARALLEL VOTING	<input type="checkbox"/> NOT SUBMITTED FOR CENELEC PARALLEL VOTING
Attention IEC-CENELEC parallel voting The attention of IEC National Committees, members of CENELEC, is drawn to the fact that this Committee Draft for Vote (CDV) is submitted for parallel voting. The CENELEC members are invited to vote through the CENELEC online voting system.	61300-3-3:2023

This document is still under study and subject to change. It should not be used for reference purposes.

Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Recipients of this document are invited to submit, with their comments, notification of any relevant "In Some Countries" clauses to be included should this proposal proceed. Recipients are reminded that the CDV stage is the final stage for submitting ISC clauses. (SEE [AC/22/2007](#) OR [NEW GUIDANCE DOC](#)).

TITLE:

Fibre optic interconnecting devices and passive components - Basic test and measurement procedures - Part 3-3: Examinations and measurements - Active monitoring of changes in attenuation and return loss

PROPOSED STABILITY DATE: 2029

NOTE FROM TC/SC OFFICERS:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
CONTENTS

3 FOREWORD	4
4 1 Scope	6
5 2 Normative references	6
6 3 Terms, definitions and abbreviations	6
7 3.1 Terms and definitions	6
8 3.2 Abbreviations	7
9 4 General description	7
10 4.1 Measurement method	7
11 4.2 Precautions	7
12 5 Apparatus	8
13 5.1 Methods 1, 2 and 3	8
14 5.1.1 General	8
15 5.1.2 Launch conditions (E) and source (S)	8
16 5.1.3 Monitoring equipment	9
17 5.1.4 Detector (D)	9
18 5.1.5 Stress fixture	10
19 5.1.6 Branching device (BD)	10
20 5.1.7 Temporary joints (TJ)	10
21 5.1.8 Mode filters (single mode) and mode conditioners (multimode) (E)	10
22 5.1.9 Data acquisition	11
23 5.1.10 Monitor sample	11
24 5.1.11 Reference fibre	11
25 5.2 Methods 4 and 5	12
26 5.2.1 General	12
27 5.2.2 OTDR	13
28 5.2.3 Fibre launch sections	13
29 5.2.4 Mode filters	13
30 5.2.5 Optical switches	13
31 6 Procedure	15
32 6.1 Monitoring attenuation and return loss of a single sample – method 1	15
33 6.1.1 General	15
34 6.1.2 Attenuation monitoring – method 1	15
35 6.1.3 Return loss monitoring – method 1	15
36 6.2 Monitoring attenuation and return loss of multiple samples using a 1 × N 37 branching device – method 2	15
38 6.2.1 General	15
39 6.2.2 Attenuation monitoring – method 2	15
40 6.2.3 Return loss monitoring – method 2	16
41 6.3 Monitoring attenuation and return loss of multiple samples using two 1 × N 42 optical switches – method 3	16
43 6.3.1 General	16
44 6.3.2 Attenuation – method 3	16
45 6.3.3 Return loss – method 3	17
46 6.4 Bidirectional OTDR monitoring of attenuation and return loss of multiple 47 samples – method 4	18

48	6.4.1	General	18
49	6.4.2	Attenuation – method 4	18
50	6.4.3	Return loss – method 4	20
51	6.5	Unidirectional OTDR monitoring of attenuation and return loss of multiple samples – method 5	21
52	7	Details to be specified and reported	21
53	7.1	Method 1	21
54	7.2	Methods 2 and 3	22
55	7.3	Methods 4 and 5	22
56	Bibliography		23
57			
58			
59	Figure 1 – Method 1 – Monitoring attenuation and return loss of a single sample undergoing stress testing		11
60			
61	Figure 2 – Method 2 – Monitoring attenuation and return loss of multiple samples using a 1 × N branching device		12
62			
63	Figure 3 – Method 3 – Monitoring attenuation and return loss of multiple samples using two 1 × N optical switches		12
64			
65	Figure 4 – Method 4 – Bidirectional OTDR monitoring of attenuation and return loss of multiple samples		14
66			
67	Figure 5 – Method 5 – Unidirectional OTDR monitoring of attenuation and return loss of multiple samples		15
68			
69	Figure 6 – Cut-back measurement location (transmission)		17
70			
71	Figure 7 – Typical OTDR trace caused by the reflection from a DUT		19
72			
73	Figure 8 – Cut-back measurement location (OTDR)		20
74			
75	Table 1 – Preferred source conditions		8
76			
77	Table 2 – Preferred power meter parameters		10
	Table 3 – Example values for Rayleigh backscatter coefficient		21

78 **INTERNATIONAL ELECTROTECHNICAL COMMISSION**
7980 **FIBRE OPTIC INTERCONNECTING DEVICES**
81 **AND PASSIVE COMPONENTS –**
82 **BASIC TEST AND MEASUREMENT PROCEDURES –**83 **Part 3-3: Examinations and measurements –**
84 **Active monitoring of changes in attenuation and return loss**85 **FOREWORD**

86 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
87 all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international
88 co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and
89 in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports,
90 Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their
91 preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with
92 may participate in this preparatory work. International, governmental and non-governmental organizations liaising
93 with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for
94 Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
95

96 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
97 consensus of opinion on the relevant subjects since each technical committee has representation from all
98 interested IEC National Committees.
99

100 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
101 Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
102 Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
103 misinterpretation by any end user.
104

105 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
106 transparently to the maximum extent possible in their national and regional publications. Any divergence between
107 any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
108

109 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment
110 declared to be in conformity with an IEC Publication.
111

112 6) All users should ensure that they have the latest edition of this publication.
113

114 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
115 members of its technical committees and IEC National Committees for any personal injury, property damage or
116 other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
117 expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
118 Publications.
119

120 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
121 indispensable for the correct application of this publication.
122

123 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent
124 rights. IEC shall not be held responsible for identifying any or all such patent rights.
125

126 International Standard IEC 61300-3-3 has been prepared by subcommittee 86B: Fibre optic
127 interconnecting devices and passive components, of IEC technical committee 86: Fibre optics.
128

129 This fourth edition cancels and replaces the third edition published in 2009. This edition
130 constitutes a minor revision.
131

132 The changes with respect to the previous edition include harmonization with IEC 61300-3-4 and
133 61300-3-6 by revision of the requirements for the:
134

135 a) light source
136 b) launching condition
137 c) detector
138 d) temporary joint
139 e) as well as revision of normative references.
140

132 The text of this standard is based on the following documents:

FDIS	Report on voting
86B/xxxxFDIS	86B/xxxxRVD

133
134 Full information on the voting for the approval of this standard can be found in the report on
135 voting indicated in the above table.

136 The French version of this standard has not been voted upon.

137 This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

138 A list of all parts of IEC 61300 series, published under the general title *Fibre optic*
139 *interconnecting devices and passive components – Basic test and measurement procedures*,
140 can be found on the IEC website.

141 The committee has decided that the contents of this publication will remain unchanged until the
142 maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data
143 related to the specific publication. At this date, the publication will be

- 144 • reconfirmed,
- 145 • withdrawn,
- 146 • replaced by a revised edition, or
- 147 • amended.

iTeh STANDARD PREVIEW
(standards.iteh.ai)

148

149 [oSIST prEN IEC 61300-3-3:2023](https://standards.iteh.ai/catalog/standards/sist/ab388664-d80a-4ca0-b102-5083cc87f96e/osist-pren-iec-61300-3-3-2023)
<https://standards.iteh.ai/catalog/standards/sist/ab388664-d80a-4ca0-b102-5083cc87f96e/osist-pren-iec-61300-3-3-2023>

150 **FIBRE OPTIC INTERCONNECTING DEVICES**
 151 **AND PASSIVE COMPONENTS –**
 152 **BASIC TEST AND MEASUREMENT PROCEDURES –**

154 **Part 3-3: Examinations and measurements –**
 155 **Active monitoring of changes in attenuation and return loss**

159 **1 Scope**

160 This part of IEC 61300 describes the procedure to monitor changes in attenuation and/or return
 161 loss of a component, an interconnecting device, a fibre management system, or a protective
 162 housing, when subjected to an environmental or mechanical test. Such a procedure is
 163 commonly referred to as active monitoring. The procedure to monitor temporary changes
 164 (generally faster) during disruptive events is given in IEC 61300-3-28.

165 The procedure can be applied to measurements on single samples or to simultaneous
 166 measurements on multiple samples, both at single wavelengths and multiple wavelengths, by
 167 using branching devices and/or switches as appropriate.

168 **2 Normative references**

169 The following referenced documents are indispensable for the application of this document. For
 170 dated references, only the edition cited applies. For undated references, the latest edition of
 171 the referenced document (including any amendments) applies.

172 IEC 61300-1, *Fibre optic interconnecting devices and passive components – Basic test and*
 173 *measurement procedures – Part 1: General and guidance*

174 IEC 61300-3-1, *Fibre optic interconnecting devices and passive components – Basic test and*
 175 *measurement procedures – Part 3-1: Examinations and measurements – Visual examination*

176 IEC 61300-3-2, *Fibre optic interconnecting devices and passive components – Basic test and*
 177 *measurement procedures – Part 3-2: Examinations and measurements – Polarization*
 178 *dependent loss in a single-mode fibre optic device*

179 IEC 61300-3-28, *Fibre optic interconnecting devices and passive components – Basic test and*
 180 *measurement procedures – Part 3-6: Examinations and measurements – Transient loss*

181 IEC 61300-3-35, *Fibre optic interconnecting devices and passive components – Basic test and*
 182 *measurement procedures – Part 3-35: Examinations and measurements – Visual inspection of*
 183 *fibre optic connectors and fibre-stub transceivers*

184 **3 Terms, definitions and abbreviations**

185 **3.1 Terms and definitions**

186 For the purposes of this document, the terms and definitions are given in IEC 60050-731 and
 187 IEC 61300-1.

188 ISO and IEC maintain terminological databases for use in standardization at the following
 189 addresses:

190 • IEC Electropedia: available at <http://www.electropedia.org/>
 191 • ISO Online browsing platform: available at <http://www.iso.org/obp>.

192 **3.2 Abbreviations**

193	BD	branching device
194	DUT	device under test
195	LED	light emitting diode
196	OTDR	optical time domain reflectometer
197	PDL	polarization dependent loss
198	TJ	temporary joint
199	WDM	wavelength-division multiplexing

200 **4 General description**

201 **4.1 Measurement method**

202 The procedure describes a number of active monitoring measurement methods. Method 1
 203 describes the situation where a single sample is subject to mechanical or environmental stress
 204 testing. Methods 2 and 3 describe methods for monitoring changes in the optical performance
 205 of multiple samples. Methods 4 and 5 measure changes in the optical performance of samples
 206 using an OTDR. Methods 4 and 5 may be used only when the OTDR averaging time is much
 207 less than the variation time of the test conditions. Where there is any form of uncertainty over
 208 the measurement method used, method 1 shall be the reference method.

209 All methods are capable of being configured to monitor changes in attenuation and return loss
 210 at the same time. The required optical test parameters shall be defined in the relevant
 211 specification.

212 Where a group of samples is being monitored over a period of time, say several days or weeks,
 213 it is usual to employ some form of automated data acquisition. Also, since the changes in optical
 214 performance can be very small, it is important to ensure high measurement stability over time.

215 **4.2 Precautions**

216 The following requirements shall be met.

- 217 a) Precautions shall be taken to ensure that cladding modes do not affect the measurement as
 218 advised in IEC 61300-1.
- 219 b) Precautions shall be taken to prevent movement in the position of the fibres between the
 220 sample(s) and the test apparatus, to avoid changes in optical performance caused by
 221 bending losses.
- 222 c) The stability performance of the test equipment shall be $\leq 0,05$ dB or 10 % of the attenuation
 223 to be measured, whichever is the lower value. The stability shall be maintained over the
 224 measurement time. The required measurement resolution for attenuation shall be 0,01 dB
 225 for both multimode and single-mode.
- 226 d) To achieve consistent results, clean and inspect all samples prior to measurement
 227 in accordance with the manufacturer's instructions. Visual examination shall be undertaken
 228 in accordance with IEC 61300-3-1 and IEC 61300-3-35.

- 229 e) The power in the fibre shall be at a level that does not generate non-linear scattering effects
230 (typically < 3 mW).
- 231 f) It is common to be monitoring changes in optical performance that are small in comparison
232 with the polarization dependence of the components under test (DUT) and of parts of the
233 test apparatus such as branching devices, switches and detectors. Since polarization along
234 the fibres often changes over time, either an unpolarized or polarization scrambled source
235 can be used to measure the polarization averaged attenuation, or the methods of
236 IEC 61300-3-2 should be used to measure polarization dependent loss (PDL) and
237 attenuation together.
- 238 g) Particularly, when measuring wavelength dependent components such as WDM devices, it
239 is necessary to use a light source that does not emit light at extraneous wavelengths at
240 levels that can affect the measurement uncertainty.
- 241 h) Reflected powers from the test apparatus shall be at a level that does not affect the
242 measurement uncertainty.
- 243 i) Care shall be taken when using switches or branching devices for multimode measurements.
244 In many cases, these devices will modify the launched mode power distribution or result in
245 modal detection non-uniformity, which will give rise to additional measurement uncertainty.

246 5 Apparatus

247 5.1 Methods 1, 2 and 3

248 5.1.1 General

249 The apparatus used for methods 1, 2 and 3 of this procedure is shown in Figures 1, 2 and 3.
250 The apparatus consists of elements listed in clauses 5.1.2 to 5.1.11.

251 5.1.2 Launch conditions (E) and source (S)

252 The launch conditions for light sources shall be in accordance with IEC 61300-1 and shall be
253 measured at the output of the launch reference connector. For multimode fibre sources, a mode-
254 conditioning device may be required to satisfy these conditions, as illustrated with device E in
255 Figure 1 and the launch reference connector where the launch conditions are verified is at the
256 temporary joint into the DUT.

257 The source unit consists of an optical emitter, the associated drive electronics and fibre pigtail
258 (if any). Preferred source conditions are given in Table 1. The stability of the single-mode fibre
259 source at 23 °C shall be ± 0.01 dB over the duration of the measurement. The stability of the
260 multimode fibre source at 23 °C shall be ± 0.05 dB over the duration of the measurement. The
261 source output power shall be ≥ 20 dB above the minimum measurable power level.

262 There are a number of methods of performing measurements at multiple wavelengths. One
263 method, illustrated in Figure 3, shows independent light sources joined by optical Switch 3.

264 **Table 1 – Preferred source conditions**

No.	Type	Central wavelength nm	Spectral width nm	Source type
S1	Multimode	660 ± 30	≥ 10	Monochromator or LED
S2	Multimode	780 ± 30	≥ 10	Monochromator or LED
S3	Multimode	850 ± 30	≥ 10	Monochromator or LED
S4	Multimode	$1\ 300 \pm 30$	≥ 10	Monochromator or LED
S5	Single-mode	$1\ 310 \pm 30$	To be reported	Laser diode, monochromator or LED
S6	Single-mode	$1\ 550 \pm 30$	To be reported	Laser diode, monochromator or LED
S7	Single-mode	$1\ 625 \pm 30$	To be reported	Laser diode, monochromator or LED

NOTE 1 It is recognized that some components, e.g. for CWDM, can require the use of other source types such as tunable lasers. In these cases, the preferred source characteristics are specified on the basis of the component to be measured.

NOTE 2 Central wavelength and spectral width are defined in IEC 61280-1-3.

NOTE 3 The interference of modes from a coherent source will create speckle patterns in multimode fibre. These speckle patterns give rise to speckle or modal noise and are observed as power fluctuations, since their characteristic times are longer than the resolution time of the detector. As a result, it can be impossible to achieve stable launch conditions using coherent sources for multimode measurements. Consequently, lasers are avoided in favour of LEDs or other incoherent sources for measuring multimode components.

265

266 5.1.3 Monitoring equipment

267 Where multiple sample measurements are made, suitable apparatus is required to permit
268 monitoring of the light through the multiple paths.

269 In Figure 2, individual monitoring channels are established by dividing the light into N paths
270 using a $1 \times N$ branching device (BD). This method is practical for a small number of DUTs, since
271 it requires a multiplicity of branching devices and detectors.

272 In Figure 3, active switching of the light paths through the DUTs is used. The apparatus consists
273 of a directional branching device and two $1 \times N$ computer-controlled optical switches. The
274 channel number of these switches is sufficiently large to accommodate the DUTs under test,
275 one or more reference lines, and a reference reflectance channel.

276 The design of systems to test multiple samples requires the trade-off of a number of factors
277 such as cost and measurement capability. When testing multimode samples, for example, it
278 may be inappropriate to use branching devices and/or optical switches, due to the problems
279 surrounding modal losses and the associated cost of the test apparatus. However, optical
280 switches may be cost-effective for testing single-mode samples, particularly when the cost of
281 suitable sources and detectors and the measurement stability requirements are considered.

282 Switch parameters which shall be considered for this test include the following.

283 a) Repeatability

284 The switches shall be capable of good repeatability in per-channel insertion loss, since this
285 parameter will directly detract from the accuracy of the measurement of attenuation or return
286 loss of the DUT. The repeatability should be less than 1/10 of the attenuation change to be
287 measured. Furthermore, since environmental tests are generally carried out over extended
288 periods the switch repeatability shall be considered over the full duration of the test.

289 b) Return loss

290 The return loss characteristics of the switch shall be such that they do not unduly influence
291 the measurement in methods 2 and 3.

292 c) Wavelength dependence

293 When undertaking multiple wavelength measurements, the wavelength dependence
294 characteristics of the switch shall be taken into account, to ensure they do not unduly
295 influence the measurement in methods 2 and 3.

296 5.1.4 Detector (D)

297 The detector consists of an optical detector, the means to connect to it, and associated
298 electronics. The connection to the detector should either be with an adaptor that accepts a bare
299 fibre or a connector plug of the appropriate design. The detector shall capture all light emitted
300 by the fibre, so the sensitive area of the detector and the relative position between it and the
301 fibre should be compatible with the numerical aperture of the fibre.