

SLOVENSKI STANDARD
oSIST prEN IEC 61300-3-3:2024
01-junij-2024

Povezovalne naprave in pasivne komponente optičnih vlaken - Postopki osnovnega preskušanja in merjenja - 3-3. del: Preiskovanje in meritve - Aktivno nadzorovanje sprememb pri zmanjševanju in povračilu izgube

Fibre optic interconnecting devices and passive components - Basic test and measurement procedures - Part 3-3: Examinations and measurements - Active monitoring of changes in attenuation and return loss

Lichtwellenleiter - Verbindungselemente und passive Bauteile - Grundlegende Prüf- und Messverfahren - Teil 3-3: Untersuchungen und Messungen - Aufzeichnung der Änderung von Dämpfung und Rückflussdämpfung

Dispositifs d'interconnexion et composants passifs à fibres optiques - Méthodes fondamentales d'essais et de mesures - Partie 3-3: Examens et mesures - Contrôle actif des variations de l'affaiblissement et de l'affaiblissement de réflexion

<https://standards.iteh.ai/catalog/standards/sist/ab388064-d80a-4ca0-b102-5083cc87196c/osit-pren-icc-61300-3-3-2024>

Ta slovenski standard je istoveten z: prEN IEC 61300-3-3:2024

ICS:

33.180.20	Povezovalne naprave za optična vlakna	Fibre optic interconnecting devices
-----------	---------------------------------------	-------------------------------------

oSIST prEN IEC 61300-3-3:2024 en

86B/4885/CDV

COMMITTEE DRAFT FOR VOTE (CDV)

PROJECT NUMBER:	
IEC 61300-3-3 ED4	
DATE OF CIRCULATION:	CLOSING DATE FOR VOTING:
2024-04-19	2024-06-14
SUPERSEDES DOCUMENTS:	
86B/4759/CDV, 86B/4810A/RVC	

IEC SC 86B : FIBRE OPTIC INTERCONNECTING DEVICES AND PASSIVE COMPONENTS			
SECRETARIAT:	SECRETARY:		
Japan	Mr Shigeru Tomita		
OF INTEREST TO THE FOLLOWING COMMITTEES:	PROPOSED HORIZONTAL STANDARD:		
	<input type="checkbox"/> Other TC/SCs are requested to indicate their interest, if any, in this CDV to the secretary.		
FUNCTIONS CONCERNED:			
<input type="checkbox"/> EMC	<input type="checkbox"/> ENVIRONMENT	<input type="checkbox"/> QUALITY ASSURANCE	<input type="checkbox"/> SAFETY
<input checked="" type="checkbox"/> SUBMITTED FOR CENELEC PARALLEL VOTING		<input type="checkbox"/> NOT SUBMITTED FOR CENELEC PARALLEL VOTING	
Attention IEC-CENELEC parallel voting The attention of IEC National Committees, members of CENELEC, is drawn to the fact that this Committee Draft for Vote (CDV) is submitted for parallel voting.			
The CENELEC members are invited to vote through the CENELEC online voting system.			

This document is still under study and subject to change. It should not be used for reference purposes.

Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Recipients of this document are invited to submit, with their comments, notification of any relevant "In Some Countries" clauses to be included should this proposal proceed. Recipients are reminded that the CDV stage is the final stage for submitting ISC clauses. (SEE [AC/22/2007 OR NEW GUIDANCE DOC](#)).

TITLE:

Fibre optic interconnecting devices and passive components - Basic test and measurement procedures - Part 3-3: Examinations and measurements - Active monitoring of changes in attenuation and return loss

PROPOSED STABILITY DATE: 2029

NOTE FROM TC/SC OFFICERS:

Copyright © 2024 International Electrotechnical Commission, IEC. All rights reserved. It is permitted to download this electronic file, to make a copy and to print out the content for the sole purpose of preparing National Committee positions. You may not copy or "mirror" the file or printed version of the document, or any part of it, for any other purpose without permission in writing from IEC.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
CONTENTS

3	FOREWORD	4
4	1 Scope	6
5	2 Normative references	6
6	3 Terms, definitions and abbreviations	7
7	3.1 Terms and definitions	7
8	3.2 Abbreviations	7
9	4 General description	7
10	4.1 Measurement method	7
11	4.2 Precautions	7
12	5 Apparatus	8
13	5.1 Methods 1, 2 and 3	8
14	5.1.1 General	8
15	5.1.2 Launch conditions (E) and source (S)	8
16	5.1.3 Monitoring equipment	9
17	5.1.4 Optical power meter (PM)	10
18	5.1.5 Stress fixture	10
19	5.1.6 Branching device (BD)	10
20	5.1.7 Temporary joints (TJ)	10
21	5.1.8 Mode filters (single mode) and mode conditioners (multimode) (E)	11
22	5.1.9 Data acquisition	11
23	5.1.10 Monitor sample	11
24	5.1.11 Reference fibre	11
25	5.2 Methods 4 and 5	12
26	5.2.1 General	12
27	5.2.2 OTDR	12
28	5.2.3 Fibre launch sections	13
29	5.2.4 Mode filters	13
30	5.2.5 Optical switches	13
31	6 Procedure	14
32	6.1 Monitoring attenuation and return loss of a single sample – method 1	14
33	6.1.1 General	14
34	6.1.2 Attenuation monitoring – method 1	14
35	6.1.3 Return loss monitoring – method 1	14
36	6.2 Monitoring attenuation and return loss of multiple samples using a $1 \times N$ branching device – method 2	15
37	6.2.1 General	15
38	6.2.2 Attenuation monitoring – method 2	15
39	6.2.3 Return loss monitoring – method 2	15
40	6.3 Monitoring attenuation and return loss of multiple samples using two $1 \times N$ optical switches – method 3	15
41	6.3.1 General	15
42	6.3.2 Attenuation – method 3	15
43	6.3.3 Return loss – method 3	16
44	6.4 Bidirectional OTDR monitoring of attenuation and return loss of multiple samples – method 4	17

48	6.4.1	General	17
49	6.4.2	Attenuation – method 4	17
50	6.4.3	Return loss – method 4	19
51	6.5	Unidirectional OTDR monitoring of attenuation and return loss of multiple samples – method 5	20
52	7	Details to be specified and reported	20
53			
54			
55		Figure 1 – Method 1 – Monitoring attenuation and return loss of a single sample undergoing stress testing	11
56			
57		Figure 2 – Method 2 – Monitoring attenuation and return loss of multiple samples using a 1 × N branching device	12
58			
59		Figure 3 – Method 3 – Monitoring attenuation and return loss of multiple samples using two 1 × N optical switches	12
60			
61		Figure 4 – Method 4 – Bidirectional OTDR monitoring of attenuation and return loss of multiple samples	13
62			
63		Figure 5 – Method 5 – Unidirectional OTDR monitoring of attenuation and return loss of multiple samples	14
64			
65		Figure 6 – Cut-back measurement location (transmission)	16
66			
67		Figure 7 – Typical OTDR trace caused by the reflection from a DUT	18
68			
69		Figure 8 – Cut-back measurement location (OTDR)	19
70			
71		Table 1 – Preferred source conditions	9
72			
73		Table 2 – Preferred power meter parameters	10
74		Table 3 – Example values for Rayleigh backscatter coefficient	20

Document Preview

75 **INTERNATIONAL ELECTROTECHNICAL COMMISSION**76

77 **FIBRE OPTIC INTERCONNECTING DEVICES**
78 **AND PASSIVE COMPONENTS –**
79 **BASIC TEST AND MEASUREMENT PROCEDURES –**80 **Part 3-3: Examinations and measurements –**
81 **Active monitoring of changes in attenuation and return loss**82 **FOREWORD**

83 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

84 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

85 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

86 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

87 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

88 6) All users should ensure that they have the latest edition of this publication.

89 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

90 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

91 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at <https://patents.iec.ch>. IEC shall not be held responsible for identifying any or all such patent rights.

92 IEC 61300-3-3 has been prepared by subcommittee 86B: Fibre optic interconnecting devices and passive components, of IEC technical committee 86: Fibre optics. It is an International Standard.

93 This fourth edition cancels and replaces the third edition published in 2009. This edition constitutes a minor revision.

94 The changes with respect to the previous edition include harmonization with IEC 61300-3-4 and 61300-3-6 by revision of the requirements for the:

95 a) light source,
96 b) launching condition,

131 c) detector,
 132 d) temporary joint,
 133 e) as well as revision of normative references.

134 The text of this International Standard is based on the following documents:

Draft	Report on voting
86B/XX/FDIS	86B/XX/RVD

135
 136 Full information on the voting for its approval can be found in the report on voting indicated in
 137 the above table.

138 The language used for the development of this International Standard is.

139 This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in
 140 accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available
 141 at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are
 142 described in greater detail at www.iec.ch/publications.

143 A list of all parts of IEC 61300 series, published under the general title *Fibre optic*
 144 *interconnecting devices and passive components – Basic test and measurement procedures*,
 145 can be found on the IEC website.

146 The committee has decided that the contents of this document will remain unchanged until the
 147 stability date indicated on the IEC website under webstore.iec.ch in the data related to the
 148 specific document. At this date, the document will be

149 • reconfirmed,
 150 • withdrawn, or
 151 • revised.

(<https://standards.iteh.ai>)
Document Preview

155 **FIBRE OPTIC INTERCONNECTING DEVICES**
 156 **AND PASSIVE COMPONENTS –**
 157 **BASIC TEST AND MEASUREMENT PROCEDURES –**

159 **Part 3-3: Examinations and measurements –**
 160 **Active monitoring of changes in attenuation and return loss**

164 **1 Scope**

165 This part of IEC 61300 describes the procedure to monitor changes in either attenuation or
 166 return loss, or both, of a component, an interconnecting device, a fibre management system, or
 167 a protective housing, when subjected to an environmental or mechanical test. Such a procedure
 168 is commonly referred to as active monitoring. The procedure to monitor temporary changes
 169 (generally faster) during disruptive events is given in IEC 61300-3-28.

170 The procedure can be applied to measurements on single samples or to simultaneous
 171 measurements on multiple samples, both at single wavelengths and multiple wavelengths, by
 172 using either branching devices or switches, or both, as appropriate.

173 **2 Normative references**

174 The following referenced documents are indispensable for the application of this document. For
 175 dated references, only the edition cited applies. For undated references, the latest edition of
 176 the referenced document (including any amendments) applies.

177 IEC 60050-731, *International Electrotechnical Vocabulary (IEV) – Part 731: Optical fibre*
 178 *communication*

179 IEC 61300-1, *Fibre optic interconnecting devices and passive components – Basic test and*
 180 *measurement procedures – Part 1: General and guidance*

181 IEC 61300-2 (all parts), *Fibre optic interconnecting devices and passive components – Basic*
 182 *test and measurement procedures – Part 2: Tests*

183 IEC 61300-3-1, *Fibre optic interconnecting devices and passive components – Basic test and*
 184 *measurement procedures – Part 3-1: Examinations and measurements – Visual examination*

185 IEC 61300-3-2, *Fibre optic interconnecting devices and passive components – Basic test and*
 186 *measurement procedures – Part 3-2: Examinations and measurements – Polarization*
 187 *dependent loss in a single-mode fibre optic device*

188 IEC 61300-3-6, *Fibre optic interconnecting devices and passive components – Basic test and*
 189 *measurement procedures – Part 3-6: Examinations and measurements – Return loss*

190 IEC 61300-3-28, *Fibre optic interconnecting devices and passive components – Basic test and*
 191 *measurement procedures – Part 3-28: Examinations and measurements – Transient loss*

192 IEC 61300-3-35, *Fibre optic interconnecting devices and passive components – Basic test and*
 193 *measurement procedures – Part 3-35: Examinations and measurements – Visual inspection of*
 194 *fibre optic connectors and fibre-stub transceivers*

195 IEC 61280-1-3, *Fibre optic communication subsystem test procedures – Part 1-3: General*
 196 *communication subsystems – Measurement of central wavelength, spectral width and additional*
 197 *spectral characteristics*

198 **3 Terms, definitions and abbreviations**

199 **3.1 Terms and definitions**

200 For the purposes of this document, the terms and definitions are given in IEC 60050-731 and
 201 IEC 61300-1.

202 ISO and IEC maintain terminological databases for use in standardization at the following
 203 addresses:

- 204 • IEC Electropedia: available at <http://www.electropedia.org/>
- 205 • ISO Online browsing platform: available at <http://www.iso.org/obp>.

206 **3.2 Abbreviations**

207 BD	branching device
208 DUT	device under test
209 LED	light emitting diode
210 OTDR	optical time domain reflectometer
211 PDL	polarization dependent loss
212 TJ	temporary joint
213 WDM	wavelength-division multiplexing

214 **4 General description**

215 **4.1 Measurement method**

216 The procedure describes active monitoring measurement methods. Method 1 describes the
 217 situation where a single sample is subject to mechanical or environmental stress testing.
 218 Methods 2 and 3 describe methods for monitoring changes in the optical performance of multiple
 219 samples. Methods 4 and 5 measure changes in the optical performance of samples using an
 220 optical time domain reflectometer (OTDR). Methods 4 and 5 may be used only when the OTDR
 221 averaging time is much less than the variation time of the test conditions. Where there is any
 222 form of uncertainty over the measurement method used, method 1 shall be the reference
 223 method.

224 All methods are capable of being configured to monitor changes in attenuation and return loss
 225 at the same time. The required optical test parameters shall be defined in the relevant IEC
 226 61753-series performance standard or IEC 62005-series reliability document.

227 Where a group of samples is being monitored over a period of time, say several days or weeks,
 228 it is usual to employ some form of automated data acquisition. Since the changes in optical
 229 performance can be very small, it is important to ensure high measurement stability over time.

230 **4.2 Precautions**

231 The following requirements shall be met.

- 232 a) Precautions shall be taken to ensure that cladding modes do not affect the measurement as
 233 advised in IEC 61300-1.

- 234 b) Precautions shall be taken to prevent movement in the position of the fibres between the
235 sample(s) and the test apparatus, to avoid changes in optical performance caused by
236 bending losses.
- 237 c) The stability performance of the test equipment shall be $\leq 0,05$ dB or 10 % of the attenuation
238 to be measured, whichever is the lower value. The stability shall be maintained over the
239 measurement time. The required measurement resolution for attenuation shall be 0,01 dB
240 for both multimode and single-mode fiber.
- 241 d) To achieve consistent results, all samples shall be cleaned and inspected prior to
242 measurement, in accordance with the manufacturer's instructions. Visual examination shall
243 be undertaken in accordance with IEC 61300-3-1 and IEC 61300-3-35.
- 244 e) The power in the fibre shall be at a level that does not generate non-linear scattering effects
245 (typically < 3 mW).
- 246 f) It is common to be monitoring changes in optical performance that are small in comparison
247 with the polarization dependence of the device under test (DUT) and of parts of the test
248 apparatus such as branching devices, switches, and detectors. Since polarization along the
249 fibres often changes over time, either an unpolarized or polarization scrambled source can
250 be used to measure the polarization averaged attenuation, or the methods of IEC 61300-3-
251 2 should be used to measure polarization dependent loss (PDL) and attenuation together.
- 252 g) When measuring wavelength dependent components such as wavelength-division
253 multiplexing (WDM) devices, it is necessary to use a light source that does not emit light at
254 extraneous wavelengths at levels that can affect the measurement uncertainty.
- 255 h) Reflected powers from the test apparatus shall be at a level that does not affect the
256 measurement uncertainty.
- 257 i) When using switches or branching devices for multimode measurements, ensure that the
258 launch conditions to the DUT satisfy 5.1.2 and that these devices do not introduce
259 unacceptable measurement uncertainty due to modal detection non-uniformity,

(https://standards.iteh.ai)

Document Preview

260 5 Apparatus

261 5.1 Methods 1, 2 and 3

262 5.1.1 General

oSIST prEN IEC 61300-3-3:2024

263 stain The apparatus used for methods 1, 2 and 3 of this procedure is shown in Figure 1, Figure 2 and Figure 3. The apparatus consists of elements listed in 5.1.2 to 5.1.11.

265 5.1.2 Launch conditions (E) and source (S)

266 The launch conditions for light sources shall be in accordance with IEC 61300-1 and shall be
267 measured at the output of the launch reference connector. For multimode fibre sources, a mode-
268 conditioning device can be required to satisfy these conditions, as illustrated with device E in
269 Figure 1 and the launch reference connector where the launch conditions are verified is at the
270 temporary joint into the DUT.

271 The source unit consists of an optical emitter, the associated drive electronics and fibre pigtail
272 (if any). Preferred source conditions are given in Table 1. The stability of the single-mode fibre
273 source at 23 °C shall be $\pm 0,01$ dB over the duration of the measurement. The stability of the
274 multimode fibre source at 23 °C shall be $\pm 0,05$ dB over the duration of the measurement. The
275 source output power shall be ≥ 20 dB above the minimum measurable power level.

276 There are several methods of performing measurements at multiple wavelengths. One method,
277 illustrated in Figure 3, shows independent light sources joined by optical Switch 3.