INTERNATIONAL STANDARD

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION MEЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ ORGANISATION INTERNATIONALE DE NORMALISATION

2632/1

Roughness comparison specimens — Part I: Turned, ground, bored, milled, shaped and planed

Échantillons de comparaison viso-tactile de rugosité — Partie I : Tournage, rectification, alésage, fraisage, rabotage et planage

Рабочие образцы шероховатости Gacmb I: обточенные, PREVIEW шлифованные, расточенные, фрезерованные и строганные teh.ai)

First edition - 1975-05-15

<u>ISO 2632-1:1975</u> https://standards.iteh.ai/catalog/standards/sist/598334a9-7990-4782b26b-eda6b190600e/iso-2632-1-1975

FOREWORD

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO Member Bodies). The work of developing International Standards is carried out through ISO Technical Committees. Every Member Body interested in a subject for which a Technical Committee has been set up has the right to be represented on that Committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the Technical Committees are circulated to the Member Bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 2632/I was drawn up by Technical Committee VIEW ISO/TC 57, *Metrology and properties of surfaces*, and circulated to the Member Bodies in May 1972.

It has been approved by the Member Bodies of the following countries:

Belgium Canada Czechoslovakia	https://standards.iteh.ai/cat Italy b26b-eda6t Japan b26b-eda6t	alog/standards/sist/598334a9-7990-4782- South Africa, Rep. of Spain Sweden
Egypt, Arab Rep. of	New Zealand	Switzerland
Finland	Norway	Thailand
Germany	Poland	United Kingdom
Hungary	Portugal	U.S.S.R.
Ireland	Romania	

The Member Body of the following country expressed disapproval of the document on technical grounds :

France

© International Organization for Standardization, 1975 •

Printed in Switzerland

Roughness comparison specimens – Part I : Turned, ground, bored, milled, shaped and planed

iTeh STANDARD PREVIEW

1 SCOPE AND FIELD OF APPLICATION standards. 41e By electro-forming positive replicas of master surfaces.

This International Standard specifies the characteristics of specimens of turned, ground, bored, milled, shaped and 32-1:1 **4.2**. By making positive replicas in plastics of master surfaces. By coating or otherwise, the feel and appearance planed surfaces which are intended for tactile and visual and and visual and and and an appearance of the natural machined surface should be represented. comparison with workpiece surfaces of similar (lay produced) (2/150-2632-1-1975) by similar machining methods.

2 REFERENCES

ISO 3, Preferred numbers – Series of preferred numbers.

ISO/R 468, Surface roughness.

3 DEFINITIONS

3.1 roughness comparison specimen : A specimen surface of known average roughness height (R_a) representing a particular machining or other production process. The specimen is used to give design personnel guidance on the feel and appearance of the particular production process and roughness grade, and to enable workshop personnel to evaluate and control workpiece surfaces by tactile and visual comparison with the specimen surface.

3.2 lay: The direction of the predominant surface pattern, ordinarily determined by the process used in producing the surface.

Other terms used to describe surface characteristics or measurement are defined in ISO/R 468.

4 METHODS OF MANUFACTURE

The specimens shall be manufactured as follows :

4.3 By direct application of the production process which the specimen is intended to represent (individually machined specimens).

5 SURFACE CHARACTERISTICS

Master surfaces for reproduction, their resultant electro-formed and plastics replicas, and individually machined specimens (see 4.1, 4.2 and 4.3) shall exhibit only the characteristics resulting from the natural action of the machining process which they are intended to represent. They shall not contain pseudo surface irregularities such as can be induced, for instance, in grinding, by abnormal conditions.

6 RANGES OF ROUGHNESS GRADES

The ranges of roughness grades are to be as given in table 1, overleaf.

7 SAMPLING LENGTHS

The sampling lengths given in table 2 overleaf are to be used in evaluating the specimens. In the case of repetitive profiles, the sampling length shall be rounded-off to include the nearest greater whole number of cycles (see note under table 2).

	Mean arithmetic deviation R _a						
Gri	nding	Turning	and boring	Milling		Shaping and planing	
μm	μin	μm	μin	μm	μin	μm	μin
0,025	1						
0,05	2	1	· · ·				
0,1	4						
0,2	8						
0,4	16	0,4	16	0,4	16		
0,8	32	0,8	32	0,8	32	0,8	32
1,6	63	1,6	63	1,6	63	1,6	63
3,2	125	3,2	125	3,2	125	3,2	125
		6,3	250	6,3	250	6,3	250
		12,5	500	12,5	500	12,5	500
						25,0	1 000

TABLE 1 - Ranges of roughness grades of roughness comparison specimens

NOTES

1 The values given in table 1 are selected from one of the preferred series of ISO/R 468. In cases when it is necessary to provide specimens in intermediate values, these should be chosen from the R 10 series of preferred numbers.

2 Certain of the finer values are included primarily to give design office personnel some idea of the differences that can be detected (between, say, 0,025, 0,05 and 0,1 μm) by visual means.

(standards.iteh.ai)

<u>ISO 2632-1:1975</u>

https://standards.iteh.ai/catalog/standards/sist/598334a9-7990-4782b26b-eda6b190600e/iso-2632-1-1975

Mean arithm	netic deviation	Sampling length							
	R _a	Grit	Grinding Turning and boring		Milling		Shaping and planing		
μm	μin	mm	in	mm	in	mm	in	mm	in
0,025	1	0,25	0.01			f			
0,05	2	0,25	0.01						
0,1	4	0,25	0.01						
0,2	8	0,25	0.01						
0,4	16	0,8	0.03	0,8	0.03	0,8	0.03		
0,8	32	0,8	0.03	0,8	0.03	0,8	0.03	0,8	0.03
1,6	63	0,8	0.03	0,8	0.03	2,5	0.1	0,8	0.03
3,2	125	2,5	0.1	2,5	0.1	2,5	0.1	2,5	0.1
6,3	250			2,5	0.1	8,0	0.3	2,5	0.1
12,5	500			2,5	0.1	8,0	0.3	8,0	0.3
25,0	1 000							8,0	0.3

TABLE 2 - Sampling lengths

NOTE - The dominant spacing of the specimen surfaces shall be not greater than the given sampling length.

8 CALIBRATION

Sufficient readings shall be taken across the direction of lay of the surface at evenly distributed positions to enable the mean value and the standard deviation to be determined. 25 readings have been found sufficient for many engineering surfaces but this number may be decreased for periodic surfaces or increased to meet excessive scatter of results.

The mean value of the readings should not vary from the nominal value by an amount greater than the percentage of the nominal value as given in table 3.

The standard deviation from the mean value should not be greater than an amount equal to the percentage of the nominal value as given in table 3.

The figures are to be based on readings obtained with an instrument working correctly in accordance with $ISO \dots 1$) and which includes from 3 to 6 sampling lengths within a traversing length. If the instrument used for a determination has a known or assumed error, this error should be taken into consideration. If other numbers of sampling lengths are included in the instrument reading the value for standard deviation so derived from the 25 readings should be calculated in accordance with $ISO \dots 2^{1}$.

Type of specimen	Tolerance on mean value (percentage of nominal value)		Standard deviation (percentage of effective value)
Ground	+ 12	- 17	9
Turned	+ 12	- 17	4
Bored	+ 12	- 17	4
Milled	+ 12	17	12
Shaped	+ 12	- 17	4
Planed	+ 12	- 17	4

TABLE 3 - Tolerance values for roughness comparison specimens

NOTE – The values for standard deviation have been derived from measurements using instruments each having a traversing length containing from 3 to 6 sampling lengths. When other instruments which do not have this characteristic are used, the values for

standard deviation should be derived in accordance with ISO \dots ²⁾.

9 LAY

9.1 Direction

The general direction of the lay should preferably be iTeh STANDAR parallel to the shorter side of the specimen. In cases such as fine peripheral milling, when the surface irregularities (standards. irregularities resulting from imperfections of cutting edges appear to be of greater consequence than the surface irregularities resulting from cutter feed, the dominant lay shall still be <u>ISO 2632-1:10</u> parallel to the shorter side of the specimen although the https://standards.iteh.ai/catalog/standardsfeed marks.may be parallel to the longer side.

b26b-eda6b190600e/iso-2632-1-1975

¹⁾ In preparation.

²⁾ International Standard on specimen calibration (in preparation).

9.2 Lay characteristics

The lay characteristics should be as given in table 4.

Lay description	Production process represented	Form of specimen	Stylised representation of lay characteristics
	peripheral grinding	flat cylindrical convex	
	turning	cylindrical convex	
straight lav	boring	cylindrical concave	
	peripheral milling	flat	
	shaping	flat	
	planing iTeh STA	ND ARD PREV	IEW
arcuate lay	(star https://standards.iteh.ai/o b26b-eda end milling face turning	ISO 2632-1:1975 atalog/standards/sist/598334a9-7 6b190600e/iso-2632-1-1975 flat flat	990-47
crossed arcuate lay	end milling side-wheel grinding cup-wheel grinding	flat flat flat	

.

TABLE 4 – Lay characteristics

10 MARKING

Each specimen, or its mounting, should be marked with the following :

10.1 The mark "ISO" together with the roughness number (see table 5).

10.2 The nominal R_a value expressed in micrometres and, where required, also in micro-inches.

10.3 The production process represented by the specimen, i.e. ground, turned, etc.

Roughness	Nominal values of R _a			
number	μm	μin		
N1	0,025	1		
N2	0,05	2		
N3	0,1	4		
N4	0,2	8		
N5	0,4	16		
N6	0,8	32		
N7	1,6	63		
N8	3,2	125		
N9	6,3	250		
N10	12,5	500		
N11	25	1 000		

TABLE 5 - Nominal values and related roughness numbers

of roughness comparison specimens

NOTES

1 Consideration will be given to the inclusion of requirements for the marking of other parameters as these are defined and adopted.

iTeh STANDAR 2 Marking should not be applied to the reference surface of the specimen. (standards.iteh.ai)

ISO 2632-1:1975

https://standards.iteh.ai/catalog/standards/sist/598334a9-7990-4782b26b-eda6b190600e/iso-2632-1-1975

iTeh STANDARD PREVIEW (standards.iteh.ai)

.

<u>ISO 2632-1:1975</u> https://standards.iteh.ai/catalog/standards/sist/598334a9-7990-4782b26b-eda6b190600e/iso-2632-1-1975