

Designation: B171/B171M – $11^{\epsilon 1}$

StandardSpecification for Copper-Alloy Plate and Sheet for Pressure Vessels, Condensers, and Heat Exchangers¹

This standard is issued under the fixed designation B171/B171M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (\$\epsilon\$) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

ε¹ NOTE—Table 1 Cr editorially corrected in March 2011.

1. Scope*

1.1 This specification² establishes the requirements for copper-alloy plate, sheet, and circles cut from plate and sheet for pressure vessels, condensers, and heat exchangers. The following alloys are covered:

Copper Alloy	Previously Used Designation
C36500	Leaded Muntz Metal
C44300	Admirality, Arsenical
C44400	Admirality, Antimonial
C44500	Admirality, Phosphorized
C46400	Naval Brass, Uninhibited
C46500	Naval Brass, Arsenical
C61300	Aluminum Bronze
C61400	Aluminum Bronze D
C63000	10 % Aluminum-Nickel Bronze
C63200	9 % Aluminum-Nickel Bronze
C70600	90-10 Copper Nickel
C70620	90-10 Copper Nickel -(modified for welding)
C71500	70-30 Copper Nickel
C71520	70-30 Copper Nickel-(modified for welding)
C72200	ASTM B171/F

pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.

2. Referenced Documents

2.1 ASTM Standards:³

B248 Specification for General Requirements for Wrought Copper and Copper-Alloy Plate, Sheet, Strip, and Rolled Bar

B248M Specification for General Requirements for Wrought Copper and Copper-Alloy Plate, Sheet, Strip, and Rolled Bar (Metric)

B601 Classification for Temper Designations for Copper and Copper Alloys—Wrought and Cast

B846 Terminology for Copper and Copper Alloys

E8/E8M Test Methods for Tension Testing of Metallic Materials

E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications

E54 Test Methods for Chemical Analysis of Special Brasses and Bronzes (Withdrawn 2002)⁴

E62 Test Methods for Chemical Analysis of Copper and Copper Alloys (Photometric Methods) (Withdrawn 2010)⁴

E255 Practice for Sampling Copper and Copper Alloys for the Determination of Chemical Composition

E478 Test Methods for Chemical Analysis of Copper Alloys E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

3. Terminology

3.1 For definitions of terms related to copper and copper alloys, refer to Terminology B846.

4. Ordering Information

- 4.1 Include the following information when placing orders for product under this specification, as applicable:
 - 4.1.1 ASTM designation and year of issue,
- 4.1.2 Whether inch-pound or SI units are applicable (see 1.2),
 - 4.1.3 Copper Alloy UNS. No. (see Section 6, Table 1),
- 4.1.4 Whether the alloy ordered will be used in applications requiring it to be welded (see Table 1, footnotes B and C for

¹ This specification is under the jurisdiction of ASTM Committee B05 on Copper and Copper Alloys and is the direct responsibility of Subcommittee B05.01 on Plate, Sheet, and Strip.

Current edition approved Jan. 1, 2011. Published February 2011. Originally approved in 1942. Last previous edition approved in 2009 as B171/B171M – 09a. DOI: 10.1520/B0171_B0171M-11E01.

² For ASME Boiler and Pressure Vessel Code applications, see related Specification SB-171 in Section II of that Code.

³ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

⁴The last approved version of this historical standard is referenced on www.astm.org.

TABLE 1 Chemical Requirements

per, incl ilver 0-61.0 0-73.0 0-73.0 0-73.0 0-73.0	Tin 0.25 0.8-1.2 0.8-1.2 0.8-1.2	Nickel, incl Cobalt	Manganese, max	Lead 0.25-0.7 0.07	Iron 0.15	Zinc	Aluminum	Chromium	Other Named Elements
)-73.0)-73.0)-73.0	0.8-1.2 0.8-1.2				0.15	remainder			
)-73.0)-73.0	0.8-1.2			0.07					
)-73.0				0.07	0.06	remainder			0.02-0.06 As
	0.8-1.2			0.07	0.06	remainder			0.02-0.10 Sb
60.0	0.0 1.2			0.07	0.06	remainder			0.02-0.10 P
J-62.U	0.50-1.0			0.20	0.10	remainder			
0-62.0	0.50-1.0			0.20	0.10	remainder			0.02-0.06 As
ainder	0.20-0.50	0.15	0.20	0.01	2.0-3.0	0.10 ^C	6.0-7.5		0.10 Si
									0.015 P
ainder			1.0	0.01	1.5-3.5	0.20	6.0-8.0		0.015 P
ainder	0.20	4.0-5.5	1.5		2.0-4.0	0.30	9.0-11.0		0.25 Si
ainder		$4.0-4.8^{D}$	1.2-2.0	0.02	$3.5-4.3^{D}$		8.7-9.5		0.10 Si
ainder		9.0-11.0	1.0	0.05^{C}	1.0-1.8	1.0 ^C			
5 min		9.0-11.0	1.0	0.02	1.0-1.8	0.50			0.05 C
								0.02 P	
									0.02 S
ainder		29.0-33.0	1.0	0.05 ^C	0.40-1.0	1.0 ^C			
0 min		29.0-33.0	1.0	0.02	0.40-1.0	0.50			0.05 C
								0.02 P	
									0.02 S
ainder		15.0-18.0	1.0	0.05 ^C	0.50-1.0	1.0 ^C		†0.30-0.70	0.03 Si
								•	0.03 Ti
a a a a a a a	-62.0 inder inder inder inder inder inder inder min	-62.0 0.50-1.0 inder 0.20-0.50 inder 0.20 inder index	-62.0 0.50-1.0 inder 0.20-0.50 0.15 inder inder 0.20 4.0-5.5 inder 4.0-4.8 ^p inder 9.0-11.0 inder 9.0-11.0 inder 29.0-33.0 inder 29.0-33.0	-62.0 0.50-1.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-62.0 0.50-1.0 0.20 0.10 remainder inder 0.20-0.50 0.15 0.20 0.01 2.0-3.0 0.10 ^C 6.0-7.5 inder 1.0 0.01 1.5-3.5 0.20 6.0-8.0 inder 0.20 4.0-5.5 1.5 2.0-4.0 0.30 9.0-11.0 inder 4.0-4.8 ^D 1.2-2.0 0.02 3.5-4.3 ^D 8.7-9.5 inder 9.0-11.0 1.0 0.05 ^C 1.0-1.8 1.0 ^C min 9.0-11.0 1.0 0.02 1.0-1.8 0.50 inder 29.0-33.0 1.0 0.05 ^C 0.40-1.0 1.0 ^C inder 29.0-33.0 1.0 0.05 ^C 0.40-1.0 1.0 ^C inder 29.0-33.0 1.0 0.02 0.40-1.0 0.50	-62.0 0.50-1.0 0.20 0.10 remainder inder 0.20-0.50 0.15 0.20 0.01 2.0-3.0 0.10 ^C 6.0-7.5 inder 0.20-0.50 0.15 0.20 0.01 1.5-3.5 0.20 6.0-8.0 inder 0.20 4.0-5.5 1.5 2.0-4.0 0.30 9.0-11.0 inder 4.0-4.8 ^D 1.2-2.0 0.02 3.5-4.3 ^D 8.7-9.5 inder 9.0-11.0 1.0 0.05 ^C 1.0-1.8 1.0 ^C min 9.0-11.0 1.0 0.02 1.0-1.8 0.50 inder 29.0-33.0 1.0 0.05 ^C 0.40-1.0 1.0 ^C inder 29.0-33.0 1.0 0.05 ^C 0.40-1.0 1.0 ^C inder 29.0-33.0 1.0 0.02 0.40-1.0 0.50

^A Designation established in accordance with Practice E527.

(https://standards.ital

UNS Nos. C61300 and C72200, respectively, and UNS Nos. C70620 and C71520 in place of UNS Nos. C70600 and C71500).

- 4.1.5 Whether plate is to be machined (see 9.1.3),
- 4.1.6 How tolerance is specified (Table 2 Footnote A),
- 4.1.7 Certification, if required (Section 17),
- 4.1.8 Weight (total for each size),
 - 4.1.9 Mill test report, if required (Section 18),
 - 4.1.10 Special marking, if required (Section 19), and
 - 4.1.11 Whether 0.2 yield offset strength is required.

5. Materials and Manufacture

5.1 *Material*—The material and manufacture shall be cast cake of the Copper Alloy UNS No. specified in the purchase order and shall be of such shape and soundness so as to be suitable for processing into the final product.

5.2 *Manufacture*—The product shall be manufactured by hot rolling or forging and finished by such cold working and annealing as may be necessary to achieve the required dimensions and properties.

6. Chemical Composition

- 6.1 The materials shall conform to the chemical compositional requirements specified in Table 1 for the copper alloy UNS designations specified in the ordering information.
- 6.2 These composition limits do not preclude the presence of other elements. Limits for unnamed elements may be established by agreement between manufacturer or supplier and purchaser.
- 6.3 For the alloys listed below, depending on analytical methodology, either copper or zinc, respectively, may be taken

TABLE 2 Thickness Tolerances

	Thickness Tolerances, Plus and Minus, A,B in. [mm] for Diameters or Widths					
Thickness, in. [mm]	36 in. [1000 mm] or Under, incl	Over 36 to 60 in. [1000 to 1500 mm], incl	Over 60 to 96 in. [1500 to 2500 mm], incl	Over 96 to 132 in. [2500 to 3500 mm], incl		
Over 0.125 to 0.250 [3.0 to 6.0 mm], incl	0.010 [0.25]	0.012 [0.30]	0.022 [0.56]	0.028 [0.71]		
Over 0.250 to 0.500 [6.0 to 12.0 mm], incl	0.025 [0.64]	0.027 [0.69]	0.029 [0.74]	0.031 [0.79]		
Over 0.500 to 0.750 [12.0 to 19.0 mm], incl	0.028 [0.71]	0.030 [0.76]	0.032 [0.81]	0.035 [0.89]		
Over 0.750 to 1.000 [19.0 to 25.0 mm], incl	0.033 [0.84]	0.035 [0.89]	0.037 [0.94]	0.040 [1.0]		
Over 1.000 to 1.500 [25.0 to 38.0], incl	0.038 [0.97]	0.040 [1.0]	0.042 [1.1]	0.045 [1.1]		
Over 1.500 to 1.750 [38.0 to 44.0 mm], incl	0.043 [1.1]	0.045 [1.1]	0.047 [1.2]	0.050 [1.3]		
Over 1.750 to 2.000 [44.0 to 50.0 mm], incl	0.050 [1.3]	0.055 [1.4]	0.062 [1.6]	0.065 [1.7]		
Over 2.000 to 5.000 [50.0 to 127 mm], incl	0.058 [1.5]	0.062 [1.6]	0.065 [1.7]			

^A When tolerances are specified as all plus or all minus, double the values given.

^B When the product is for subsequent welding applications, and is so specified by the purchaser, chromium shall be 0.05 % max, cadmium 0.05 % max, zirconium 0.05 % max and zinc 0.05 % max.

^C When the product is for subsequent welding applications, and is so specified by the purchaser, zinc shall be 0.50 % max, lead 0.02 % max, phosphorus 0.02 % max, sulfur 0.02 % max, and carbon 0.05 % max.

^D Iron content shall not exceed the nickel content.

[†] Editorially corrected.

^B See 9.1.2 for specific alloys with a difference tolerance.

as the difference between the sum of all the elements analyzed and 100 %. When all the elements in Table 1 are analyzed their sum shall be as shown below:

Copper Alloy UNS No.	Copper Plus Named Elements, % min
C36500	99.6
C44300	99.6
C44400	99.6
C44500	99.6
C46400	99.6
C46E00	00.6

6.3.1 For the alloys listed below, copper may be taken as the difference between the sum of all the elements and 100%. When all of the elements in Table 1 are analyzed, their sum shall be as shown below:

Copper Alloy UNS No.	Copper Plus Named Elements, % min
C61300	99.8
C61400	99.5
C63000	99.5
C63200	99.5
C70600	99.5
C70620	99.5
C71520	99.5
C71500	99.5
C72200	99.8

7. Temper

- 7.1 Tempers available under this specification, and as described in Classification B601, are As Hot Rolled (M20), Hot Rolled and Annealed (O25), Hot Forged and Annealed (O20), and As Hot Forged-Air Cooled (M10) as given in Table 3.
- 7.1.1 Products manufactured for *ASME Boiler and Pressure Vessel Code* applications must be certified to the O25 or O20 temper.
- 7.1.2 Products manufactured for other than *ASME Boiler* and *Pressure Vessel Code* applications may be produced in either the M20, M10, O20, or O25 temper.

8. Mechanical Property Requirements

- 8.1 Tensile Strength Requirements:
- 8.1.1 Product furnished under this specification shall conform to the tensile property requirements prescribed in Table 3, when tested in accordance with Test Method E8/E8M.

9. Dimensions, Mass, and Permissible Variations

- 9.1 Thickness:
- 9.1.1 The thickness tolerances for plates of Copper Alloy UNS Nos. C36500, C44300, C44400, C44500, C46400, and C46500 shall be as prescribed in Table 2.
- 9.1.2 The thickness tolerances for plates of Copper Alloy UNS Nos. C61300, C61400, C63000, C63200, C71500, C70620, C71520, and C72200 shall be 25 % greater than those prescribed in Table 2.
- 9.1.3 If plates are machined, the thickness tolerances shall apply to the machined portion only.
- 9.1.4 Closer thickness tolerances than those prescribed in Table 2 can be furnished by surface machining. This is a special product and is subject to agreement between the manufacturer and the purchaser. This special product shall apply only when specified by the purchaser in the contract or order.
- 9.1.5 Unless otherwise agreed to by the manufacturer and the purchaser, the thickness of plate to this specification shall be determined by measuring along the length of the plate up to a distance of 7 in. [180 mm] from the edge.
- 9.2 Diameters, Lengths, or Widths—The diameters, lengths, or widths of plates shall be not less than those specified. The diameters, lengths, or widths of plates may exceed those specified by the amounts shown in Table 4.

TABLE 3 Tensile Requirements—M20, M10, O20, and O25 Tempers

TABLE 3 Tensile Requirements—M20, MT0, O20, and O25 Tempers						
Copper Alloy UNS No.	Thickness, in. [mm]	Tensile Strength, min, ksi ^A [MPa]	Yield Strength, ^B min, ksi ^A [MPa]	Yield Strength ^C 0.2 % Offset, min, ksi ^A [MPa]	Elongation in 2 in. [50.0 mm], min, %	
	2 [50.0] and under	50 [345]	20 [140]	20 [140]	35 [35]	
C36500	over 2 to 3.5 [50.0 to 100.0], incl	45 [310]	15 [105]	15 [105]	35 [35]	
	over 3.5 to 5 [100.0 to 140.0], incl	40 [275]	12 [85]	12 [85]	35 [35]	
C44300, C44400, and C44500	4 [100.0] and under	45 [310]	15 [105]	15 [105]	35 [35]	
C46400, C46500	3 [80.0] and under	50 [345]	20 [140]	20 [140]	35 [35]	
	over 3 to 5 [80.0 to 140.0], incl	50 [345]	18 [125]	18 [125]	35 [35]	
C61300	2 [50.0] and under	75 [520]	37 [255]	36 [250]	30 [30]	
	over 2 to 3 [50.0 to 80.0], incl	70 [485]	30 [205]	28 [195]	35 [35]	
	over 3 to 5 [80.0140.0], incl	65 [450]	28 [195]	26 [180]	35 [35]	
C61400	2 [50.0] and under	70 [485]	30 [205]	28 [195]	35 [35]	
	over 2 to 5 [50.0 to 140.0], incl	65 [450]	28 [195]	26 [180]	35 [35]	
C63000 and C63200	2 [50.0] and under	90 [620]	36 [250]	34 [235]	10 [10]	
	over 2 to 3.5 [50.0 to 100.0], incl	85 [585]	33 [230]	31 [215]	10 [10]	
	over 3.5 to 5.0 [100.0 to 140.0], incl	80 [550]	30 [205]	28 [195]	10 [10]	
C70600 and C70620	2.5 [60.0] and under	40 [275]	15 [105]	15 [105]	30 [30]	
	over 2.5 to 5 [60.0 to 140.0], incl	40 [275]	15 [105]	15 [105]	30 [30]	
C71500 and C71520	2.5 [60.0] and under	50 [345]	20 [140]	20 [140]	30 [30]	
	over 2.5 to 5 [60.0 to 140.0], incl	45 [310]	18 [125]	18 [125]	30 [30]	
C72200	2.5 [60.0] and under	42 [290]	16 [110]	16 [110]	35 [35]	

^A ksi = 1000 psi

^C See 4.1.9.

B Yield strength is determined as the stress producing an elongation of 0.5 % or under load, that is 0.01 in. [0.254 mm] in a gage length of 2 in. [50.0 mm].