

Designation: D3354-08 Designation: D3354 - 11

# Standard Test Method for Blocking Load of Plastic Film by the Parallel Plate Method<sup>1</sup>

This standard is issued under the fixed designation D3354; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon ( $\varepsilon$ ) indicates an editorial change since the last revision or reapproval.

# 1. Scope \*

- 1.1 This test method yields quantitative information regarding the degree of blocking (unwanted adhesion) existing between layers of plastic film. It is not intended to measure susceptibility to blocking.
- 1.2 By this procedure, the film-to-film adhesion, expressed as a blocking load in grams, will cause two layers of film with an area of contact of 100 cm<sup>2</sup> to separate. The test method is limited to a maximum load of 200 g.
  - 1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.
- 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Note 1—This test method is similar to ISO 11502 Method B, but is not technically equivalent.

#### 2. Referenced Documents

2.1 ASTM Standards:<sup>2</sup>

D618 Practice for Conditioning Plastics for Testing

D883 Terminology Relating to Plastics

E691 Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method

2.2 ISO Standard:

ISO 11502 Determination of Blocking Resistance<sup>3</sup> and ard S. Iteh. 21)

## 3. Terminology

3.1 Definitions: For—For definitions of terms used in this test method, refer to Terminology D883.

## 4. Summary of Test Method

4.1 Two pieces of film, which are in contact with each other, are placed between two 100-mm (4-in.) square blocks. The ends of the films that extend past the blocks are secured to the respective upper and lower block. The force required to overcome the adhesion (blocking force) between the two pieces of film or until they reach 1.9 cm of separation is measured in grams using a constant-rate-of-load or a constant-rate-of separation device.

# 5. Significance and Use

- 5.1 Blocking develops in film processing and storage when layers of smooth film are in intimate contact with nearly complete exclusion of air. Temperature, or pressure, or both, can induce or change the degree of adhesion of the surfaces.
  - 5.2 The procedure of this test method closely simulates the operation of separating film in some end-use applications.

#### 6. Apparatus

6.1 The parallel block faces shall be square and  $100 \pm 0.1$  mm (on each edge with a flat and slightly knurled or sand-blasted finish of root mean square 125). A means must be provided to prevent the blocks from sliding when they are in contact during loading.

<sup>&</sup>lt;sup>1</sup> This test method is under the jurisdiction of ASTM Committee D20 on Plastics and is the direct responsibility of Subcommittee D20.19 on Film and Sheeting. Current edition approved Nov. 1, 2008. Published November 2008. Originally approved in 1974. Last previous edition approved in 2004 as D3354-04. DOI: 10.1520/D3354-08. on Molded and Extruded Products.

Current edition approved May 1, 2011. Published May 2011. Originally approved in 1974. Last previous edition approved in 2008 as D3354 - 08. DOI: 10.1520/D3354-11.

<sup>2</sup> For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

<sup>&</sup>lt;sup>3</sup> Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036, http://www.ansi.org.



- 6.2 Constant-Rate-of-Load Device<sup>4</sup>:
- 6.2.1 An instrument with 100-cm<sup>2</sup> (4-in.  $^2$ ) blocks which electronically times a loading rate of 90 grams per minute ( $\pm 1$ ) (see Fig. 1). The force required to separate the blocks is displayed electronically.
- Note 2—On some constant-rate-of load devices, the weight is added by moving a weight axially along the beam with a precision-drive system. This may be accomplished using a stepper motor with a digital stepping drive with 60 cycles as its reference control. The load rate must be 90 grams per minute.
- 6.3 Constant-Rate-of-Separation Testing Device—A testing machine of the constant-rate-of crosshead-movement type and comprising essentially the following:
- 6.3.1 Fixed Member—A fixed or essentially stationary member carrying one aluminum block 100 by 100  $\pm$  1 mm with appropriate rigid adapter for mounting in a universal testing machine.
- 6.3.2 *Movable Member*—A movable member carrying a second aluminum block 100 by  $100 \pm 1$  mm with rigid coupling for mounting in a universal testing machine.
- 6.3.3 *Drive Mechanism*—A drive mechanism for imparting to the movable member a uniform, controlled velocity with respect to the stationary member. The speed of testing, 5₁1 mm/min, is the rate of separation of the two blocks when running idle (under no load). This rate of separation shall be maintained within 5 % of the no-load value when running under full-capacity load.
  - 6.3.4 Load Indicator—A suitable load-indicating mechanism capable of showing the tensile load, the greater of 1 % of the indicated force or 5 grams, carried by the test specimen held by the block.
    - 6.4 Accessory Equipment—May include a 100 by 180-mm template or die, double-faced pressure-sensitive tape.

## 7. Test Specimens

7.1 Cut unseparated test specimens with a 100 by 180-mm template with the longer length being in the machine direction. Due to variations in gage and blocking tendencies, it is desirable to select several sample locations across the width of the film. Five

(https://standards.iteh.ai)



FIG. 1 Electro-Mechanical Device

https://standards.iteh.ai/c

<sup>&</sup>lt;sup>4</sup> The sole source of supply of the electro mechanical apparatus known to the committee at this time is Kayeness, Inc., East Main St., Honeybrook, PA 19344. Alpha Technologies, 3030 Gilchrist Road, Akron, OH 44305. If you are aware of alternative suppliers, please provide this information to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend.