INTERNATIONAL STANDARD ISO 21782-5 First edition Electrically propelled road vehicles — Test specification for electric propulsion components — Part 5: Operating load testing of the motor iTeh STANDARD PREVIEW (S Véhicules à propulsion electrique — Spécification d'essai pour les composants de propulsion électrique — Partie 5: Essai de charge de fonctionnement d'un système de moteur https://standards.iteh.ai/catalog/standards/sist/e138d4a3-e8ad-4dd7-9f27-2192fef36317/iso-prf-21782-5 # PROOF/ÉPREUVE Reference number ISO 21782-5:2021(E) # iTeh STANDARD PREVIEW (standards.iteh.ai) ISO/PRF 21782-5 https://standards.iteh.ai/catalog/standards/sist/e138d4a3-e8ad-4dd7-9f27-2192fef36317/iso-prf-21782-5 #### **COPYRIGHT PROTECTED DOCUMENT** © ISO 2021 ii All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org Published in Switzerland | Contents | | | | | | |----------|---|---|----|--|--| | Fore | word | | iv | | | | 1 | Scope | | | | | | 2 | Norn | native references | 1 | | | | 3 | Tern | ns and definitions | 1 | | | | 4 | | bols and abbreviated terms | | | | | 5 | Tests and requirements | | | | | | | 5.1 | Endurance test | 1 | | | | | | 5.1.1 General | 1 | | | | | | 5.1.2 Test diagram | 2 | | | | | | 5.1.3 Test conditions | | | | | | | 5.1.4 Test procedure | 3 | | | | | | 5.1.5 Test requirements | 5 | | | | | 5.2 | Surge voltage measurement test | | | | | | | 5.2.1 General | | | | | | | 5.2.2 Test diagram | | | | | | | 5.2.3 Test conditions | | | | | | | 5.2.4 Test procedure | | | | | | | 5.2.5 Test requirements | | | | | | 5.3 | Over speed test 5.3.1 General STANDARD PREVIEW | 8 | | | | | | 5.3.1 General | 8 | | | | | | 5.3.2 Test diagram
5.3.3 Test conditions ndards.iteh.ai) | 8 | | | | | | 5.3.3 Test conditions na aras. Iten.al | 9 | | | | | | 5.3.4 Test procedure | 9 | | | | | | 5.3.5 Test requirements SO/PRF-21782-5 | | | | | 6 | Test report https://standards.iteh.ai/catalog/standards/sist/e138d4a3-e8ad-4dd7-9f27- | | | | | | Ann | ex A (in | 2192feß6317/iso-prf-21782-5 formative) Methods for determining the rank for over speed test | 10 | | | | Ann | ex B (in | formative) Test report | 12 | | | #### Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html. (standards.iteh.ai) This document was prepared by Technical Committee ISO/TC 22, *Road vehicles*, Subcommittee SC 37, *Electrically propelled vehicles*. ISO/PRF 21782-5 https://standards.iteh.ai/catalog/standards/sist/e138d4a3-e8ad-4dd7-9f27- A list of all parts in the ISO 21782 series can be found on the ISO website. Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html. ## Electrically propelled road vehicles — Test specification for electric propulsion components — #### Part 5: ### Operating load testing of the motor system #### 1 Scope This document specifies operating load tests and test criteria for the motor system designed as a voltage class B electric propulsion system for electrically propelled road vehicles. #### 2 Normative references The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 21782-1:2019, Electrically propelled road vehicles — Test specification for electric propulsion components — Part 1: General test conditions and definitions ISO 21498-1, Electrically propelled road vehicles Specification of voltage sub-classes for voltage class B ## 3 Terms and definitions ISO/PRF 21782-5 https://siandards.iteh.ai/catalog/standards/sist/e138d4a3-e8ad-4dd7-9f27- For the purposes of this document, the terms and definitions given in ISO 21782-1 apply. ISO and IEC maintain terminological databases for use in standardization at the following addresses: - ISO Online browsing platform: available at https://www.iso.org/obp - IEC Electropedia: available at http://www.electropedia.org/ #### 4 Symbols and abbreviated terms For the purposes of this document, symbols and abbreviated terms given in ISO 21782-1 apply. #### 5 Tests and requirements #### 5.1 Endurance test #### 5.1.1 General The purpose of this test is to evaluate and rank the strength for the components – motor shaft key, rotor fixture, shaft tightening part, stator fixtures, power semiconductor chip, and DC bus capacitor – which are affected by mechanical or electrical fatigue. The test is set considering repeated operations at the upper specification limits of the motor system, which operate under the conditions of the paired inverter and motor combination. Unless otherwise specified, the test method can be decided by the supplier and customer. #### 5.1.2 Test diagram The test diagram is shown in Figure 1. #### Key - DUT 1 - 2 motor - 3 inverter - 4 DC power supply - 5 load - torque / speed detector 6 - 7 power meter (standards.iteh.ai) - torque / speed meter 8 - 9 thermo meter #### ISO/PRF 21782-5 2192fef36317/iso-prf-21782-5 iTeh STANDARD PREVIEW - inverter output current (in A)//standards.iteh.ai/catalog/standards/sist/e138d4a3-e8ad-4dd7-9f27-10 - motor torque (in Nm) 11 - motor speed (in min⁻¹) - measurement points temperatures (in °C) 13 Figure 1 — Diagram for the endurance test of the motor system #### 5.1.3 **Test conditions** Test conditions are shown in <u>Table 1</u>. Table 1 — Conditions for endurance test of the motor system | Ite | ms | Value | Remark | |--------------------------|--------|--|---| | Inverter input voltage | | Rated voltage as defined in ISO 21782-
1:2019, 3.22 | DC voltage tolerance, see ISO 21782-1:2019, 5.3 | | Ambient cond | itions | Room temperature (RT) and humidity as defined in ISO 21782-1:2019, 5.4 | | | Coolant tem-
perature | Liquid | Maximum temperature for unlimited operating capability | Ethylene glycol and propylene glycol as example of coolant | | | Air | Maximum temperature for unlimited operating capability | | | Coolant flow rate | Liquid | Minimum flow rate for unlimited operating capability | | | | Air | Minimum flow rate for unlimited operating capability | | #### 5.1.4 Test procedure The test pattern consisting of maximum torque mode and maximum speed mode is shown in Figure 2. Time parameter t_1 , t_2 and t_3 in Figure 2 shall be as shown in Table 2. The tests shall be conducted by alternating the maximum torque mode and maximum speed mode as shown in Figure 3 and Table 3. The tests shall be conducted by repeating the number of cycles according to the corresponding rank listed in Table 4. The temperature of each part of the motor system shall be controlled so that they are substantially equal to the saturation temperature. NOTE To protect torque meter, test can be performed without it, after setting up the maximum torque. In that case, torque meter can be replaced by power meter to measure motor input currents. # $\begin{array}{ll} t & \text{time (in s)} \\ n & \text{speed (in min}^{-1}) \\ n_{r} & \text{rated speed (in min}^{-1}) \\ n_{m} & \text{maximum speed (in min}^{-1}) \\ M & \text{torque (in Nm)} \\ M_{t=2} & \text{maximum torque of the motor system for duration of t_{0}=2 (in Nm)} \\ M_{c} & \text{calculated torque of the motor system at operating point "c" (in Nm)} \\ s & 1 \text{ cycle} \end{array}$ Figure 2 — Endurance test pattern for the motor system Table 2 — Description of time parameter in Figure 2 | Time parameters | Requirements and recommendations | |-----------------|--| | t_1 | This shall be reduced to the technically possible minimum. | | t_2 | This should be shorter than 1 s. | t_1 , t_2 , t_3 time parameter Key Table 2 (continued) | Time
parameters | | Requirements and recommendations | |--------------------|--|---| | t_3 | | This shall be controlled so that the temperature of the motor system does not exceed the maximum temperature for unlimited operating capability (T_s) . | #### Key - t time (in s) - n speed (in min⁻¹) - n_r rated speed (in min⁻¹) - $n_{\rm m}$ maximum speed (in min⁻¹) - M torque (in Nm) - $M_{\rm t=2}$ maximum torque of the motor system for duration of t_0 =2 (in Nm) - M_c calculated torque of the motor system at operating point "c" (in Nm) - T temperature (in °C) - $T_{\rm S}$ maximum temperature for unlimited operating capability (in °C) - N_1 number of cycles of maximum torque mode - N_2 number of cycles of maximum speed mode - 1 motor torque - 2 measurement points temperatures Figure 3 — Long time span view of Figure 2 Table 3 — Values of parameter in Figure 3 | Parameters | Value ^a | |------------|--------------------| | N_1 | 850 | | N_2 | 150 | The value of parameters N_1 and N_2 can be decided by agreement between the supplier and customer. But the ratio of N_1 and N_2 shall be 850:150(17:3). Table 4 — Number of cycles of endurance test for the motor system | Ranks | Number of cycles | | |-------|------------------|--| | S | 2 000 000 | | | A | 1 000 000 | | | В | 500 000 | | | С | 300 000 | | #### 5.1.5 Test requirements #### **5.1.5.1** General The cyclic test shall be started from C rank, which is listed in <u>Table 4</u>. Confirmation by energizing and disassembling shall be conducted after the endurance test. Before starting the test, target rank shall be decided by the supplier and customer. After each rank, energizing should be done to confirm that difference before and after the test are within the respective criteria shown in <u>Table 5</u>, but the supplier and customer can agree to only <u>do energizing after the target rank</u>. After the target rank has been achieved, disassembling shall be done to confirm the respective criteria shown in <u>Table 6</u> are fulfilled. #### ISO/PRF 21782-5 #### **5.1.5.2** Energizing ps://standards.iteh.ai/catalog/standards/sist/e138d4a3-e8ad-4dd7-9f27- Before conducting this test, the data of the tests shown in <u>Table 5</u> shall be obtained in order to compare the data before and after this test. Back electromotive force (back-EMF) measurement The back-EMF of the motor is measured at the 10 % of maximum speed driven externally. They shall be within 5 % difference before and after the test. NOTE If the type of motor is different from a permanent magnet motor, this measurement can be omitted. Position sensor origin position check and waveform check The difference in the back-EMF waveform of the reference phase and the origin position of the position sensor at the 10 % of maximum speed driven externally shall be measured. They shall be within 5° difference in electrical angle before and after the test. Torque-speed characteristics The motor torque, motor input voltage, inverter output current, and motor speed shall be measured using the load test bench at the operating point "a" and "c" of ISO 21782-1:2019, Figure 1. The difference in torque before and after the test shall be within 5 %. Measurement of vibration The generated vibrations of the motor during acceleration by the inverter to the maximum speed shall be measured. The acceleration rate shall be adequately slow. The vibration data before and after the test shall be compared for no significant increase. The difference in the vibration values shall be judged by an agreement between the supplier and customer. Criteria of energizing is shown in <u>Table 5</u>. Table 5 — Criteria of energizing | Measurement items | Condition | Criteria | |---|--|--| | Back-EMF | 10 % of maximum speed | Within 5 % difference before and after the test | | Origin position and waveform of position sensor | Specified speed | Within 5° difference in electrical angle before and after the test | | Torque-speed characteristics | Operating point "a" and "c" | Within 5 % difference in the torque before and after the test | | Vibration | During acceleration to the maximum speed by inverter | No significant increase | | | (acceleration rate: adequately slow) | | #### 5.1.5.3 Disassembling (option) After the energizing tests, the motor system may be disassembled and investigated according to <u>Table 6</u>. Disassembling is agreed by the supplier and customer in case of abnormalities in the non-destructive examinations. Table 6 — Criteria of disassembling | Parts/places | Details of investigation | Criteria | |------------------------------------|---|--| | Motor shaft key iT | Deformation, wear ARD PRI | No large deformation | | | (standards.itch.a | No large wear | | Rotor magnet fixture | Peeling off of adhesive deformation | No peeling | | (adhesive) | ISO/PRF 21782-5 | | | Shaft tightening part https://star | 8 | No large deformation | | (spline, etc.) | 2192fef36317/iso-prf-21782-5 | No large wear | | Stator fixtures | Wear, deviation, loosening | No large wear | | (thermal insert, bolt) | | No large deviation | | | | No loosening | | Power semiconductor chip | Electrical resistance and thermal resistance | Within 10 % difference before and after the test | | DC bus capacitor | Capacitance and impedance characteristics at the typically used frequency | Within 10 % difference before and after the test | NOTE In case of insulated gate bipolar transistor (IGBT), the resistance between the collector and the emitter is measured. In case of field effect transistor (FET), the resistance between the drain and the source is measured. #### 5.2 Surge voltage measurement test #### 5.2.1 General The purpose of this test is to ensure that the voltage applied to motor input terminal is below the withstand voltage specified by the motor manufacturer in consideration of temperature, humidity, barometric pressure and durability. The paired motor and inverter shall be used in the test. #### 5.2.2 Test diagram The test diagram is shown in Figure 4.