FINAL DRAFT

INTERNATIONAL STANDARD

ISO/FDIS 23820

ISO/TC 22/SC 34

Secretariat: ANSI

Voting begins on: 2023-01-31

Voting terminates on: **2023-03-28**

Determination of the filtration efficiency of urea filter modules

Détermination de l'efficacité de filtration des modules de filtres à urée

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/FDIS 23820

https://standards.iteh.ai/catalog/standards/sist/587bc8c3-b315-40f3-8b3e-aa9fd0047766/iso-fdis-23820

RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT, WITH THEIR COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE AND TO PROVIDE SUPPORTING DOCUMENTATION.

IN ADDITION TO THEIR EVALUATION AS BEING ACCEPTABLE FOR INDUSTRIAL, TECHNOLOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT INTERNATIONAL STANDARDS MAY ON OCCASION HAVE TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL TO BECOME STANDARDS TO WHICH REFERENCE MAY BE MADE IN NATIONAL REGULATIONS.

Reference number ISO/FDIS 23820:2023(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/FDIS 23820 https://standards.iteh.ai/catalog/standards/sist/587bc8c3-b315-40f3-8b3e

COPYRIGHT PROTECTED DOCUMENT

© ISO 2023

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Co	Contents Pa					
Foreword						
1	Scop	ne	1			
2	Nori	native references	1			
3	Terr	ns and definitions				
4	Sym	bols				
5	Test	procedures	3			
	5.1	Principle				
	5.2	Test equipment and materials	4			
		5.2.1 Test rig	4			
		5.2.2 Filter test circuit				
		5.2.3 Contaminant injection circuits				
		5.2.4 Automatic particle counting devices				
		5.2.5 Test fluid				
		5.2.6 Test contaminant				
		5.2.7 Stop watch				
		5.2.8 Ultra clean bottles				
	= 0	5.2.9 Ultra-sonic bath				
	5.3	Test rig validation				
		5.3.1 General				
	5.4	Procedure 1971				
		5.4.1 Operating conditions				
		5.4.2 Preparation of the contaminant injection circuits				
		5.4.3 Preparation of the test circuit				
	5.5	5.4.4 Filter efficiency and retention capacity test Expression of results	11 12			
	5.6 Test report					
	•	formative) Determination of the initial filtration efficiency as per this docu	ment15			
Rihl	ingranl	nv	21			

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 22, *Road vehicles*, Subcommittee SC 34, *Propulsion, powertrain and powertrain fluids.*

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Determination of the filtration efficiency of urea filter modules

1 Scope

This document specifies requirements relating to the testing method for AUS 32/diesel exhaust fluid (DEF) filters for the removal of suspended matter. This applies to urea filters dedicated to passenger vehicles as well as to commercial vehicles. This method applies to filters with flow rates from 3 l/h to 30 l/h depending on the application (by default 5 l/h for passenger vehicles and 25 l/h for commercial vehicles). This method can be used for other flow rates, provided the validation requirement can be met.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 11218, Aerospace — Cleanliness classification for hydraulic fluids

ISO 11923, Water quality — Determination of suspended solids by filtration through glass-fibre filters

ISO 21501-3, Determination of particle size distribution — Single particle light interaction methods — Part 3: Light extinction liquid-borne particle counter

3 Terms and definitions ai/catalog/standards/sist/587bc8c3-b315-40f3-8b3e-

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at https://www.electropedia.org/

3.1

cumulative overall mean filtration efficiency

 $E_{\rm v}$

cumulative efficiency calculated from the total number of particles greater than size x [μ m] counted upstream and downstream of a filter during the initial 60 min counting period at 5 mg/l

Note 1 to entry: The efficiency is expressed in [%].

3.2

differential pressure

 ΔP

pressure difference between the inlet and outlet of the complete filter unit measured under predetermined conditions

Note 1 to entry: The differential pressure generated by the complete filter is equal to the sum of the differential pressures generated by the housing and by the filter element (in case the filter element is removable from the housing).

Note 2 to entry: The differential pressure is expressed in kPa.

ISO/FDIS 23820:2023(E)

3.3

ISO MTD

ISO medium test dust

siliceous test powder having a particle size distribution by volume in accordance with ISO 12103-1, A3

Note 1 to entry: It may also be referred as ISO 12103-1 A3 dust.

3.4

nominal flow rate

0

flow rate for the filter specified by the manufacturer

Note 1 to entry: The flow rate is expressed in l/h.

3.5

reference filtration rating

S

dimension of the ISO MTD particles at which the overall mean cumulative filtration efficiency of the integral filter (or the filter element) tested in accordance with the procedure described in this document, is greater than or equal to $99\,\%$

Note 1 to entry: The reference filtration rating is expressed in μm .

4 Symbols

The symbols used in this document are given in <u>Table 1</u>.

Table 1 — Symbols

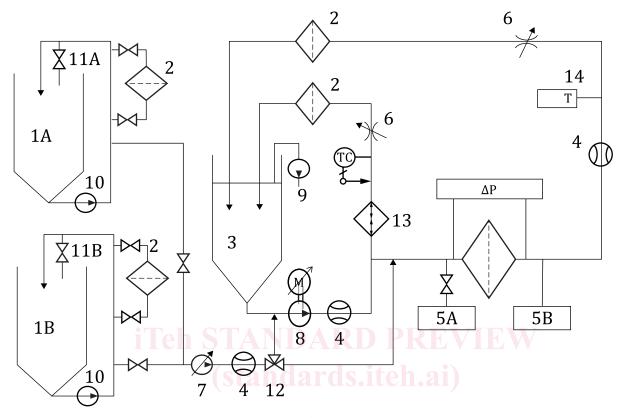
Symbol	Parameter	Unit
C _e latter ca//a	Test concentration 150/FDIS 23820	mg/l
$C_{\rm i}$	Injection concentration	mg/l
$C_{\rm R}$	Retention capacity	g
$C_{\rm NR}$	Concentration of the downstream fluid during the clogging period	mg/l
C_{ov}	Coefficient of variation	%
d	Size of the particle	μm
ΔP_0	Loss of pressure due to the clean filter alone	kPa
$\Delta P_{ m F}$	Loss of pressure at the end of the test	kPa
$\overline{E_{\chi}}$	Cumulative efficiency at size greater than x µm	%
М	Mass of contaminant necessary for the test	g
M_{i1}	Injected mass of contaminant in injection reservoir 1	g
M_{i2}	Injected mass of contaminant in injection reservoir 2	g
$N_{i \text{ UP}} > x \mu m$	i th particle count upstream at x μm	-/ml
$N_{i \text{ DW}} > x \mu m$	i th particle count downstream at x μm	-/ml
\overline{Q}	Flow rate	l/h
$Q_{\rm r}$	Recirculation flow rate	l/h
$Q_{\rm C1}$	Injection flow rate circuit 1 (relative to the efficiency concentration)	l/h
Q_{C2}	Injection flow rate circuit 2 (relative to the capacity concentration)	l/h
$S_{\rm sc}$	Suspended solid concentration	mg/l
V_{i1}	Injection circuit N°1 fluid volume	l

Table 1 (continued)

Symbol	Parameter	Unit
V_{i2}	Injection circuit N°2 fluid volume	l
V _{iM} Injection circuit maximum fluid volume		l
V_{CP}	Recovered downstream volume during the clogging period	
V_{CPV}		
$\Delta T_{ m CP}$	Time duration of the clogging period	h

5 Test procedures

5.1 Principle


The performance of the filter to be tested is determined by measuring its hydraulic and separative properties when subjected to a constant flow rate of water conveying a known quantity of contaminant. The test is performed with the water after passage through clean-up filters to produce a single pass configuration. The test is conducted in two stages.

The first stage determines the initial efficiency of the test filter. It is conducted with a contaminant concentration of 5 mg/l upstream to the test filter for 60 min. The second stage determines the mass of contaminant needed to reach a specified differential pressure. This stage is conducted with an upstream concentration of 800 mg/l, or as specified according to the customer specification. The retention capacity shall be determined from the mass of contaminant required for obtaining a predetermined differential pressure of 10 kPa or other value according to customer's specifications. Several operating parameters are specified as a function of the type of filter under test, e.g. the standard flow rate of 5 l/h is recommended for testing a standard urea filter module for passenger vehicles and 25 l/h for commercial vehicles, unless otherwise specified.

https://standards.iteh.ai/catalog/standards/sist/587bc8c3-b315-40f3-8b3e-aa9fd0047766/iso-fdis-23820

5.2 Test equipment and materials

5.2.1 Test rig

Key			
1A	injection reservoir for efficiency period at 5 mg/l (N°1)	88ist/5	main recirculation pump 3
1B	injection reservoir for clogging period at maximum $800 \text{ mg/l} (N^{\circ}2)$	fgis-2	regulating level volume system
2	clean up filter	10	recirculation injection loop pump
3	main reservoir (6 l)	11A	injection circuit (N°1) sampling valve
4	flow meter	11B	injection circuit (N°2) sampling valve
5A	upstream side particle counter	12	three-way valves
5B	downstream side particle counter	13	heat exchanger
6	counter pressure control valve	14	temperature sensor
7	injection pump		

Figure 1 — Diagram of filtration efficiency and retention capacity test rig

5.2.2 Filter test circuit

The filter test circuit is designed to permit the recycling of the fluid being filtered. Both return line and recirculation loops are equipped with clean-up filters which retain all of the test particles that have passed through the test filter or before going back to the main reservoir (a filtration efficiency of 99 % at 1 μ m is suitable for such clean up filters). In case of multiple usage of the test liquid, the risk of biological growth is given. Suitable control and countermeasures shall be implemented.

The test circuit comprises the following:

a) a conical bottom reservoir having a recommended cone angle less than or equal to 90°. Its volume is of 6 l. The residence time inside the reservoir shall be of 30 s and the height shall be preferably

between twice and three times its diameter. Other type reservoir with other volumes can be used if requirements of 5.3.1.2 are fulfilled. The recycled water return line penetrates beneath the free face so as to avoid the risk of air entrainment;

- b) a main circulation pump which ensures a constant, non-pulsed flow rate $Q_{\rm r}$ of at least twice the volume unit (when expressed in l/min) (i.e. at least 12 l/min or 720 l/h) throughout the test duration, particularly when the filter is clogged. It shall be resistant to the test contaminant by not modifying the particle size distribution;
- c) a bypass circuit from the main recirculation loop allowing to circulate through the urea filter under test in a single pass way;
- d) two clean-up filters dedicated to the main recirculation loop and the bypass filter test loop to restore the level of the test fluid's particulate contamination at less than 10 particles /ml >5 µm;
- e) instruments for measuring the flow rate, the temperature, the differential pressures at the filter connections;
- f) two sampling devices in accordance with ISO 4021 put upstream and downstream of the filter in order to ensure representative sampling of the water and contaminant and connected to automatic particle counting devices (see <u>5.2.4</u>);
- g) interconnecting pipe and fittings, dimensioned and selected so as to ensure a turbulent flow throughout the whole circuit, thereby preventing the formation of traps, segregation and quiescent zones. The length of the piping shall be reduced to the minimum;
- h) clean water level control device in the test reservoir, to regulate the level within 5 %;
- i) temperature regulator to control the temperature at the specified value of (23 ± 2) °C;
- j) all the pipes, connections, reservoirs shall be 316L INOX with the best polishing procedure available to avoid the abrasive mix of sand and water. \$23820

https://standards.iteh.ai/catalog/standards/sist/587bc8c3-b315-40f3-8b3e

5.2.3 Contaminant injection circuits 47766/iso-fdis-23820

There are two injection circuits; one is allocated to 5 mg/l injection (injection circuit N° 1), the other for 800 mg/l injection (injection circuit N° 2).

Each injection circuit includes the following equipment:

- a) conical bottom reservoir having a recommended cone angle less than or equal to 90°. Its height is preferably between twice or three times its diameter. Other configured reservoir can be used if requirements of <u>5.3.1.1</u> are fulfilled. It is equipped with a level indicator. The recycled water returns beneath the free face:
- b) recirculation pump which generates a flow rate to ensure sufficient mixing to meet the requirements in 5.3. It shall be resistant to the test contaminant by not modifying the particle size distribution;
- c) temperature regulation device to control the water temperature at 23 \pm 2 °C;
- d) clean-up filter, installed to by-pass the injection loop, capable of achieving a cleanliness level at less than 40 particles/ml >5 μ m;
- e) contaminant injection pump which draws the concentrated contaminant into the recirculation system at a point where the flow is turbulent and discharges it via a flexible pipe into the main pump suction in case of injection circuit N°1 or upstream to the urea filter in case of injection circuit N°2. There is a three-way valve to switch from injection circuit N°1 to injection circuit N°2. It shall not generate any excessive flow rate pulsation and shall have no effect on the contaminant. The injection flow rate shall be sufficient to prevent segregation of the test dust;
- f) sampling device conforming to ISO 4021;

ISO/FDIS 23820:2023(E)

g) device for measuring the injection flow rate, insensitive to the contaminant and without effect on its particle size distribution at the concentrations scheduled for the test.

5.2.4 Automatic particle counting devices

These devices comprise one or two counters and two optical units.

These devices operate on the light extinction principle; they shall be properly calibrated using certified monosized latex spheres as per ISO 21501-3.

Ensure the concentration level of the particle sensors is capable of operating in the required system concentration levels.

5.2.5 Test fluid

The test fluid shall be demineralized and filtered water with a cleanliness level of less than 10 particles /ml >5 μ m.

NOTE Using demineralized water will prevent a chemical reaction of the silica inside the injection and test circuits.

5.2.6 Test contaminant

The test contaminant shall be silica test dust specified as ISO MTD.

5.2.7 Stop watch

5.2.8 Ultra clean bottles

Use thoroughly cleaned sample bottles when filled with micro-filtered water. The cleanliness level of the bottle shall be CSC (0) as per ISO 11218.

5.2.9 Ultra-sonic bath

The characteristics should be the following one: power of 25 W/l with an ultra-sonic frequency varying between 30 and 40 kHz.

5.3 Test rig validation

5.3.1 General

The purpose of the validation is to demonstrate that the test rig complies with the test requirements. The validation shall be carried out again whenever a component of the installation is modified or changed.

5.3.1.1 Validation of the injection circuits

The two injection circuits for attaining test concentrations of 5 mg/l and 800 mg/l shall be successively validated.

The validation is conducted with the maximum volume (V_{iM}) in each tank and at the minimum flow rates for the injection circuits. Before starting, make sure that both injection reservoirs N°1 and N°2 are clean enough (initial cleanliness level of less than 40 particles /ml >5 μ m).

a) Calculate the two injection circuit contamination concentrations so that the concentration in the test circuit.

 $C_e = 5 \text{ mg/l}$ (injection circuit N° 1) or $C_e = 800 \text{ mg/l}$ (injection circuit N° 2):

$$C_{\rm i} = \frac{QC_{\rm e}}{Q_{\rm i}} \tag{1}$$

where

- *Q* is the flow rate expressed in l/h:
- (circulation loop flowrate Q_r of 720 l/h (or either) in case of injection circuit N°1); or
- (urea/DEF filter test flowrate *Q* in case of injection circuit N°2);
- Q_i is the minimum value of the injection flow rate, in l/h;
- C_i is the injection circuit contaminant concentration, in mg/l.
- b) Prepare a mass *M* of test dust ISO MTD, previously dried at a temperature between 110 °C to 150 °C for at least 1 h and cooled to room temperature in a desiccator, to obtain the previously calculated concentration *C*i:

$$M = V_{iM}C_i \tag{2}$$

where

M is the mass of test dust, in mg;

 $V_{
m iM}$ is the injection circuit maximum fluid volume, in l;

- C_i is the injection circuit contaminant concentration, in mg/l.
- c) Disperse the contaminant in 200 ml of water taken from the injection reservoir ensuring complete homogenization (e.g. by using ultra sonics and then mixing with a non-magnetic stirrer).
- d) Introduce the fluid volume into the injection reservoir, start the recirculation pump (see <u>Figure 1</u>, key 12), introduce the test contaminant prepared in b) and c) above, and allow to circulate for at least 15 min.
- e) Set the injection flow rate at the minimum Q_i value, continuously controlling the value displayed by the flow rate meter and the height of the fluid in the injection reservoir. Start the injection into the test reservoir.
 - NOTE It is preferable to inject the contaminant by means of a flexible pipe in order to facilitate the sampling operations at the injection point.
- f) Every 30 min, during a 6 h period, take a 200 ml sample via sampling valve (see Figure 1, key 13) and at the injection point in the main circuit. Determine the suspended solids concentration in accordance with ISO 11923.
- g) The injection circuit is validated if the following conditions are satisfied:
- the injection flow recorded values does not differ by more than 5 % in terms of coefficient of variation (see definition in 5.3.1.2 h) 1);
- suspended solids for each of the injection concentrations do not differ by more than 5 % of the average measured concentration;
- $-\,$ real average measured concentration does not differ by more than 10 % of the theoretical concentration.