

SLOVENSKI STANDARD SIST CWA 16926-19:2023

01-marec-2023

Specifikacija vmesnika razširitev za finančne storitve (XFS), izdaja 3.50 - 19. del: Predlog vmesnika za razred biometričnih naprav - Referenca za programerje

Extensions for Financial Services (XFS) interface specification Release 3.50 - Part 19: Biometrics Device Class Interface Proposal - Programmer's Reference

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST CWA 16926-19:2023

Ta slovenski standard je istoveten z: CWA 16926-19:2022

ICS:

35.200	Vmesniška in povezovalna oprema	Interface and interconnection equipment
35.240.15	Identifikacijske kartice. Čipne kartice. Biometrija	Identification cards. Chip cards. Biometrics
35.240.40	Uporabniške rešitve IT v bančništvu	IT applications in banking

SIST CWA 16926-19:2023 en,fr,de

SIST CWA 16926-19:2023

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST CWA 16926-19:2023

CEN

CWA 16926-19

WORKSHOP

December 2022

AGREEMENT

ICS 35.240.15; 35.200; 35.240.40

English version

Extensions for Financial Services (XFS) interface specification Release 3.50 - Part 19: Biometrics Device Class Interface Proposal - Programmer's Reference

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the constitution of which is indicated in the foreword of this Workshop Agreement.

The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National Members of CEN but neither the National Members of CEN nor the CEN-CENELEC Management Centre can be held accountable for the technical content of this CEN Workshop Agreement or possible conflicts with standards or legislation.

This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members.

This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

Table of Contents

Ει	ıro	pean Foreword	4
1.		Introduction	7
	1.1	Background to Release 3.50	7
	1.2	XFS Service-Specific Programming	7
2.		Biometric Devices	9
	2.1	Enrollment	9
	2.2	Biometric Matching	9
	2.3	Biometric Device Types	.10
	2.4	Biometric Data Security	. 10
3.		References	11
4.		Info Commands	12
	4.1	WFS_INF_BIO_STATUS	
	4.2	WFS_INF_BIO_CAPABILITIES	. 15
	4.3	WFS_INF_BIO_STORAGE_INFO	. 20
	4.4	WFS_INF_BIO_KEY_INFO	. 21
5.		Execute Commands	22
J.	5.1	WFS_CMD_BIO_READ	
	5.1 5.2	SIST CWA 16926-19:2023	
	5.3		
	5.4		
	5.5		
	5.6		
	5.7	WFS_CMD_BIO_SET_DATA_PERSISTENCE	
	5.8		
	5.9	WFS_CMD_BIO_POWER_SAVE_CONTROL	. 35
	5.1	0 WFS_CMD_BIO_SYNCHRONIZE_COMMAND	. 36
6.		Events	37
	6.1	WFS_EXEE_BIO_PRESENTSUBJECT	
	6.2		
	6.3		
	6.4		
	6.5		
	6.6		
	6.7		
	6.8		

7.	Biometric Device Command Flows – Application Guidelines	45
7.1	Biometric Enrollment Command Flow	45
7.2	Biometric Match Command Flow – Separate Scan and Match	46
7.3	Biometric Match Command Flow – Combined Scan and Match	47
7.4	Biometric Scan-Only Command Flow	48
8.	C - Header file	49

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST CWA 16926-19:2023

European Foreword

This CEN Workshop Agreement has been developed in accordance with the CEN-CENELEC Guide 29 "CEN/CENELEC Workshop Agreements – The way to rapid consensus" and with the relevant provisions of CEN/CENELEC Internal Regulations – Part 2. It was approved by a Workshop of representatives of interested parties on 2022-11-08, the constitution of which was supported by CEN following several public calls for participation, the first of which was made on 1998-06-24. However, this CEN Workshop Agreement does not necessarily include all relevant stakeholders.

The final text of this CEN Workshop Agreement was provided to CEN for publication on 2022-11-18.

The following organizations and individuals developed and approved this CEN Workshop Agreement:

- AURIGA SPA
- CIMA SPA
- DIEBOLD NIXDORF SYSTEMS GMBH
- FIS BANKING SOLUTIONS UK LTD (OTS)
- FUJITSU TECHNOLOGY SOLUTIONS
- GLORY LTD
- GRG BANKING EQUIPMENT HK CO LTD
- HITACHI CHANNEL SOLUTIONS CORP
- HYOSUNG TNS INC
- JIANGSU GUOGUANG ELECTRONIC INFORMATION TECHNOLOGY
- KAL
- KEBA HANDOVER AUTOMATION GMBH 3026-10 2023
- eps:NCR FSGls.iteh.ai/catalog/standards/sist/05bc5907-239e-47d0-b94f-85ad553bc77a/sist-
- NEXUS SOFTWARE
- OBERTHUR CASH PROTECTION
- OKI ELECTRIC INDUSTRY SHENZHEN
- SALZBURGER BANKEN SOFTWARE
- SECURE INNOVATION
- SIGMA SPA

It is possible that some elements of this CEN/CWA may be subject to patent rights. The CEN-CENELEC policy on patent rights is set out in CEN-CENELEC Guide 8 "Guidelines for Implementation of the Common IPR Policy on Patents (and other statutory intellectual property rights based on inventions)". CEN shall not be held responsible for identifying any or all such patent rights.

The Workshop participants have made every effort to ensure the reliability and accuracy of the technical and non-technical content of CWA 16926-19, but this does not guarantee, either explicitly or implicitly, its correctness. Users of CWA 16926-19 should be aware that neither the Workshop participants, nor CEN can be held liable for damages or losses of any kind whatsoever which may arise from its application. Users of CWA 16926-19 do so on their own responsibility and at their own risk.

The CWA is published as a multi-part document, consisting of:

- Part 1: Application Programming Interface (API) Service Provider Interface (SPI) Programmer's Reference
- Part 2: Service Classes Definition Programmer's Reference
- Part 3: Printer and Scanning Device Class Interface Programmer's Reference
- Part 4: Identification Card Device Class Interface Programmer's Reference

- Part 5: Cash Dispenser Device Class Interface Programmer's Reference
- Part 6: PIN Keypad Device Class Interface Programmer's Reference
- Part 7: Check Reader/Scanner Device Class Interface Programmer's Reference
- Part 8: Depository Device Class Interface Programmer's Reference
- Part 9: Text Terminal Unit Device Class Interface Programmer's Reference
- Part 10: Sensors and Indicators Unit Device Class Interface Programmer's Reference
- Part 11: Vendor Dependent Mode Device Class Interface Programmer's Reference
- Part 12: Camera Device Class Interface Programmer's Reference
- Part 13: Alarm Device Class Interface Programmer's Reference
- Part 14: Card Embossing Unit Device Class Interface Programmer's Reference
- Part 15: Cash-In Module Device Class Interface Programmer's Reference
- Part 16: Card Dispenser Device Class Interface Programmer's Reference
- Part 17: Barcode Reader Device Class Interface Programmer's Reference
- Part 18: Item Processing Module Device Class Interface Programmer's Reference
- Part 19: Biometrics Device Class Interface Programmer's Reference
- Parts 20 28: Reserved for future use.
- Parts 29 through 47 constitute an optional addendum to this CWA. They define the integration between the SNMP standard and the set of status and statistical information exported by the Service Providers.
- Part 29: XFS MIB Architecture and SNMP Extensions Programmer's Reference
- Part 30: XFS MIB Device Specific Definitions Printer Device Class
- Part 31: XFS MIB Device Specific Definitions Identification Card Device Class
- Part 32: XFS MIB Device Specific Definitions Cash Dispenser Device Class
- Part 33: XFS MIB Device Specific Definitions PIN Keypad Device Class
- Part 34: XFS MIB Device Specific Definitions Check Reader/Scanner Device Class
- Part 35: XFS MIB Device Specific Definitions Depository Device Class
- Part 36: XFS MIB Device Specific Definitions Text Terminal Unit Device Class
- Part 37: XFS MIB Device Specific Definitions Sensors and Indicators Unit Device Class
- Part 38: XFS MIB Device Specific Definitions Camera Device Class
- Part 39: XFS MIB Device Specific Definitions Alarm Device Class
- Part 40: XFS MIB Device Specific Definitions Card Embossing Unit Class
- Part 41: XFS MIB Device Specific Definitions Cash-In Module Device Class
- Part 42: Reserved for future use.
- Part 43: XFS MIB Device Specific Definitions Vendor Dependent Mode Device Class
- Part 44: XFS MIB Application Management
- Part 45: XFS MIB Device Specific Definitions Card Dispenser Device Class
- Part 46: XFS MIB Device Specific Definitions Barcode Reader Device Class
- Part 47: XFS MIB Device Specific Definitions Item Processing Module Device Class
- Part 48: XFS MIB Device Specific Definitions Biometrics Device Class
- Parts 49 60 are reserved for future use.
- Part 61: Application Programming Interface (API) Migration from Version 3.40 (CWA 16296:2020) to Version
- 3.50 (this CWA) Service Provider Interface (SPI) Programmer's Reference
- Part 62: Printer and Scanning Device Class Interface Migration from Version 3.40 (CWA 16296:2020) to Version

3.50 (this CWA) - Programmer's Reference

Part 63: Identification Card Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50 (this CWA) - Programmer's Reference

Part 64: Cash Dispenser Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50 (this CWA) - Programmer's Reference

Part 65: PIN Keypad Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50 (this CWA) - Programmer's Reference

Part 66: Check Reader/Scanner Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50 (this CWA) - Programmer's Reference

Part 67: Depository Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50 (this CWA) - Programmer's Reference

Part 68: Text Terminal Unit Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50 (this CWA) - Programmer's Reference

Part 69: Sensors and Indicators Unit Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50 (this CWA) - Programmer's Reference

Part 70: Vendor Dependent Mode Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50 (this CWA) - Programmer's Reference

Part 71: Camera Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50 (this CWA) - Programmer's Reference

Part 72: Alarm Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50 (this CWA) - Programmer's Reference

Part 73: Card Embossing Unit Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50 (this CWA) - Programmer's Reference

Part 74: Cash-In Module Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50 (this CWA) - Programmer's Reference

Part 75: Card Dispenser Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50 (this CWA) - Programmer's Reference

Part 76: Barcode Reader Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50 (this CWA) - Programmer's Reference

Part 77: Item Processing Module Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50 (this CWA) - Programmer's Reference

Part 78: Biometric Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50 (this CWA) - Programmer's Reference

In addition to these Programmer's Reference specifications, the reader of this CWA is also referred to a complementary document, called Release Notes. The Release Notes contain clarifications and explanations on the CWA specifications, which are not requiring functional changes. The current version of the Release Notes is available online from: https://www.cencenelec.eu/areas-of-work/cen-sectors/digital-society-cen/cwa-download-area/.

The information in this document represents the Workshop's current views on the issues discussed as of the date of publication. It is provided for informational purposes only and is subject to change without notice. CEN makes no warranty, express or implied, with respect to this document.

Revision History:

3.40	December 06, 2019	Initial Release.
3.50	November 18, 2022	For a description of changes from version 3.40 to version 3.50 see the BIO 3.50 Migration document.

1. Introduction

1.1 Background to Release 3.50

The CEN/XFS Workshop aims to promote a clear and unambiguous specification defining a multi-vendor software interface to financial peripheral devices. The XFS (eXtensions for Financial Services) specifications are developed within the CEN (European Committee for Standardization/Information Society Standardization System) Workshop environment. CEN Workshops aim to arrive at a European consensus on an issue that can be published as a CEN Workshop Agreement (CWA).

The CEN/XFS Workshop encourages the participation of both banks and vendors in the deliberations required to create an industry standard. The CEN/XFS Workshop achieves its goals by focused sub-groups working electronically and meeting quarterly.

Release 3.50 of the XFS specification is based on a C API and is delivered with the continued promise for the protection of technical investment for existing applications. This release of the specification extends the functionality and capabilities of the existing devices covered by the specification:

- Addition of E2E security
- PIN Password Entry

1.2 XFS Service-Specific Programming

The service classes are defined by their service-specific commands and the associated data structures, error codes, messages, etc. These commands are used to request functions that are specific to one or more classes of Service Providers, but not all of them, and therefore are not included in the common API for basic or administration functions.

When a service-specific command is common among two or more classes of Service Providers, the syntax of the command is as similar as possible across all services, since a major objective of XFS is to standardize function codes and structures for the broadest variety of services. For example, using the **WFSExecute** function, the commands to read data from various services are as similar as possible to each other in their syntax and data structures.

In general, the specific command set for a service class is defined as a superset of the specific capabilities likely to be provided by the developers of the services of that class; thus any particular device will normally support only a subset of the defined command set.

There are three cases in which a Service Provider may receive a service-specific command that it does not support:

The requested capability is defined for the class of Service Providers by the XFS specification, the particular vendor implementation of that service does not support it, and the unsupported capability is **not** considered to be fundamental to the service. In this case, the Service Provider returns a successful completion, but does no operation. An example would be a request from an application to turn on a control indicator on a passbook printer; the Service Provider recognizes the command, but since the passbook printer it is managing does not include that indicator, the Service Provider does no operation and returns a successful completion to the application.

The requested capability is defined for the class of Service Providers by the XFS specification, the particular vendor implementation of that service does not support it, and the unsupported capability *is* considered to be fundamental to the service. In this case, a WFS_ERR_UNSUPP_COMMAND error for Execute commands or WFS_ERR_UNSUPP_CATEGORY error for Info commands is returned to the calling application. An example would be a request from an application to a cash dispenser to retract items where the dispenser hardware does not have that capability; the Service Provider recognizes the command but, since the cash dispenser it is managing is unable to fulfil the request, returns this error.

The requested capability is *not* defined for the class of Service Providers by the XFS specification. In this case, a WFS_ERR_INVALID_COMMAND error for Execute commands or WFS_ERR_INVALID_CATEGORY error for Info commands is returned to the calling application.

This design allows implementation of applications that can be used with a range of services that provide differing subsets of the functionalities that are defined for their service class. Applications may use the **WFSGetInfo** and **WFSAsyncGetInfo** commands to inquire about the capabilities of the service they are about to use, and modify their behavior accordingly, or they may use functions and then deal with error returns to make decisions as to how

to use the service.

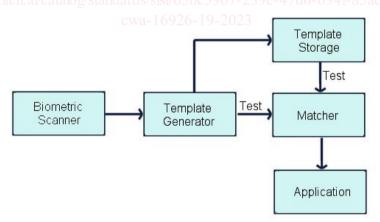
iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST CWA 16926-19:2023

2. Biometric Devices

Biometrics refers to metrics related to human characteristics and biology. Biometrics authentication can be used as a form of identification and/or access control. This is an overview of biometrics, as well as an introduction to the terminology used in this document. It introduces to XFS the concept of scanning a person's biometric data in raw image form (raw biometric data), then processing it into a smaller more concise form that is easier to manage (biometric template data). The first scan of a user is called **ENROLLMENT** as the user is effectively being enrolled into a scheme by recording their biometric data. Thereafter subsequent scans of the user can be compared to the original data in order to verify who they say they are (**VERIFICATION**), or alternatively used to identify them as a specific individual (**IDENTIFICATION**). These concepts are explained below in more detail.

2.1 Enrollment


The first time an individual uses a biometric device it is called Enrollment. During enrollment, biometric data from an individual is captured and stored somewhere, for example on a smart card or in a server/host database. Normally the raw biometric data captured will be processed and converted to a smaller format that is used for subsequent comparison. This format is referred to in this document as a template. A template is a synthesis of the relevant characteristics extracted from the original raw data. Elements of the biometric data that are not used in the matching algorithm are discarded in the template to reduce the file size and to protect the identity of the enrollee.

2.2 Biometric Matching

During the matching phase, the obtained template is passed to a matcher which compares it to other existing templates and a probable match is calculated, either as a Boolean true or false or as a threshold indicating the likelihood of a match. With regard to matching, biometric systems commonly have two different basic modes of operation: Verification and Identification:

Verification: performs a one-to-one comparison of captured biometric data with a specific template in order to verify that an individual is the person they claim to be.

Identification: the system performs a one-to-many comparison of captured biometric data in order to establish a person's identity.

Note: The above diagram does not make any assumptions about where the actual matching takes place. The interface provided is versatile enough to be able to support three basic Biometric systems:

Match on server: The biometric template data is stored on a server or host. When scanning takes place biometric data is sent to the server, which does the actual identification or verification.

Match on card: The biometric enrollment data for an individual is stored on a smart card/personal device. The device scans a user then returns the biometric template information to the application. This data is then sent to the card, and an application on the smart card chip does the comparison, returning the result to the application.

Match on device: The biometric enrollment data for an individual is stored on a smart card or host. The enrollment data is read from the card or host and into the device, which then compares it to scanned information, returning the result to the application.

2.3 Biometric Device Types

There are many different varieties of biometric hardware, this XFS biometrics specification supports three main different types of device:

1. Devices which only support scanning and returning biometric data

In this case the device is a simple biometric scanning device, User data is scanned using the WFS_CMD_BIO_READ command, but matching is performed externally, for example on a smart card or on a server. In this case the WFS_CMD_BIO_MATCH and WFS_CMD_BIO_SET_MATCH commands are not supported.

2. Devices which support a separate scan and match functionality

These devices scan and perform a comparison as separate operations. Existing biometric data is first imported using the WFS_CMD_BIO_IMPORT command. When the WFS_CMD_BIO_READ command is then called the scanned user data is temporarily stored. The WFS_CMD_BIO_MATCH command is then called to perform the comparison and return the result.

3. Devices which support a combined scan and match functionality

These devices scan and perform a comparison as a single operation. Existing biometric data is first imported using the WFS_CMD_BIO_IMPORT command. In this case the WFS_CMD_BIO_SET_MATCH command must be called first, either as a one-time call or before each WFS_CMD_BIO_READ command. The purpose of the WFS_CMD_BIO_SET_MATCH command is to set the criteria for matching. When the WFS_CMD_BIO_READ command is then called it scans the user's biometric data and also performs the comparison as a single operation. The WFS_CMD_BIO_MATCH command is then called to return the result of the comparison.

2.4 Biometric Data Security

It is recommended that biometric data should be treated with the same strict caution as any other identifying and sensitive information. A well designed biometric data handling architecture should always be designed to protect against internal tampering, external attacks and other malicious threats. There are various ways of implementing good security of which three are listed below:

• Multi Modal Biometrics SIST CWA 16926-19:2023

A Uni-Modal biometric system relies on data taken from a single source of information for authentication, for example a single fingerprint reading device. In contrast, Multi-Modal biometric systems work on the premise that it is more secure to accept information from two or more biometric inputs. As an example a user could provide a fingerprint in addition to facial recognition, a positive match from two physical characteristics improves the chances of a positive identification and mitigates the possibility that biometric data has been cloned.

• Data Encryption

Biometric data should be encrypted where possible. The BIO specification provides for this by allowing an encryption key to be specified whenever data is exchanged between an application and a BIO Service Provider. In addition, the key management interface methods of the PIN device class can be used for key management. This can be done by using the standard XFS compound device mechanism to implement a BIO Service provider as a compound device together with a PIN device class Service Provider. The device compounding mechanism is described in the XFS API specification. In this case the BIO Service Provider would implement the biometric methods necessary to read and return data, while the key loading, reporting etc. functions of the PIN Service Provider interface would be implemented in order to provide key management.

3. References

- 1. XFS Application Programming Interface (API)/Service Provider Interface (SPI), Programmer's Reference, Revision 3.50
- 2. ANSI INCITS 381-2004 Information Technology Finger Image-Based Data Interchange Format
- 3. ANSI INCITS 378-2004 Information Technology Finger Minutiae Format for Data Interchange
- 4. ISO/IEC 19794-4:2005 Information technology Biometric data interchange formats Part 4: Finger image data
- 5. ISO/IEC 19794-2:2005 Information technology Biometric data interchange formats Part 2: Finger minutiae data

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST CWA 16926-19:2023

4. Info Commands

4.1 WFS_INF_BIO_STATUS

Description This command is used to obtain the status of the biometric device. It may also return vendor-

specific status information.

Input Param None.

Output Param LPWFSBIOSTATUS lpStatus;

```
typedef struct _wfs_bio_status
WORD
                      fwDevice;
DWORD
                      dwSubject;
BOOL
                      bCaptured;
DWORD
                      dwDataPersistence;
DWORD
                      dwRemainingStorage;
LPSTR
                      lpszExtra;
WORD
                      wDevicePosition;
                      dwGuidLights[WFS_BIO_GUIDLIGHTS SIZE];
DWORD
USHORT
                      usPowerSaveRecoveryTime;
WORD
                      wAntiFraudModule;
} WFSBIOSTATUS, *LPWFSBIOSTATUS;
```

fwDevice

Specifies the state of the biometric device as one of the following values:

Value STANDARD P	Meaning
WFS BIO DEVONLINE	The device is present, powered on and online
(standards ital	(i.e. operational, not busy processing a
	request and not in an error state).
WFS_BIO_DEVOFFLINE	The device is offline (e.g. the operator has
	taken the device offline by turning a switch).
WFS BIO DEVPOWEROFF A 16926-1920	The device is powered off or physically not
https://standards.iteh.ai/catalog/standards/sist/05bc5907-23	connected.b94f-85ad553bc77a/sist-
WFS_BIO_DEVNODEVICE 6026-19-2023	There is no device intended to be there; e.g.
	this type of self-service machine does not
	contain such a device or it is internally not configured.
WFS_BIO_DEVHWERROR	The device is present but inoperable due to a
	hardware fault that prevents it from being
	used.
WFS BIO DEVUSERERROR	The device is present but a person is
	preventing proper device operation. The
	application should suspend the device
	operation or remove the device from service
	until the Service Provider generates a device
	state change event indicating the condition
	of the device has changed e.g. the error is
	removed (WFS_BIO_DEVONLINE) or a
	permanent error condition has occurred
	(WFS BIO DEVHWERROR).
WFS BIO DEVBUSY	The device is busy and unable to process an
	Execute command at this time.
WFS_BIO_DEVFRAUDATTEMPT	The device is present but is inoperable
	because it has detected a fraud attempt.
WFS BIO DEVPOTENTIALFRAUD	The device has detected a potential fraud
	attempt and is capable of remaining in
	service. In this case the application should
	make the decision as to whether to take the
	device offline.

dwSubject

Specifies the state of the subject to be scanned (e.g. finger, palm, retina, etc.) as one of the following values:

Value	Meaning
WFS_BIO_SUBJECTPRESENT	The subject to be scanned is on the scanning
	position.
WFS_BIO_SUBJECTNOTPRESENT	The subject to be scanned is not on the scanning position.
WFS BIO SUBJECTUNKNOWN	The subject to be scanned cannot be
	determined with the device in its current
	state (e.g. the value of fwDevice is
	WFS BIO DEVNODEVICE,
	WFS BIO DEVPOWEROFF,
	WFS BIO DEVOFFLINE, or
	WFS BIO DEVHWERROR).
WFS_BIO_SUBJECTNOTSUPPORTED	The physical device does not support the ability to report whether or not a subject is on the scanning position.

bCaptured

Indicates whether or not scanned biometric data has been captured using the WFS_CMD_BIO_READ command and is currently stored and ready for comparison. TRUE if data has been captured and is stored, FALSE if no scanned data is present. This will be set to FALSE when scanned data is cleared using the WFS_CMD_BIO_CLEAR command.

dwDataPersistence

Specifies the current data persistence mode. The data persistence mode controls how biometric data that has been captured using the WFS_CMD_BIO_READ command will be handled. For possible values see the description of the *fwPersistenceModes* capability field.

dwRemainingStorage

Specifies how much of the reserved storage specified by the *dwTemplateStorage* capability is remaining for the storage of templates in bytes. This will be zero if not reported.

lpszExtra

Pointer to a list of vendor-specific, or any other extended, information. The information is returned as a series of "key=value" strings so that it is easily extensible by Service Providers. Each string is null-terminated, with the final string terminating with two null characters. An empty list may be indicated by either a NULL pointer or a pointer to two consecutive null characters.

dwGuidLights [...]

Specifies the state of the guidance light indicators. The elements of this array can be accessed by using the predefined index values specified for the *dwGuidLights* [] field in the capabilities. Vendor specific guidance lights are defined starting from the end of the array. The maximum guidance light index is WFS_BIO_GUIDLIGHTS_MAX.

Specifies the state of the guidance light indicator as

WFS_BIO_GUIDANCE_NOT_AVAILABLE, WFS_BIO_GUIDANCE_OFF or a combination of the following flags consisting of one type B, optionally one type C and optionally type D.

Value	Meaning	Type
WFS_BIO_GUIDANCE_NOT_AVAILABLE	The status is not available.	A
WFS_BIO_GUIDANCE_OFF	The light is turned off.	A
WFS_BIO_GUIDANCE_SLOW_FLASH	The light is blinking slowly.	В
WFS_BIO_GUIDANCE_MEDIUM_FLASH	The light is blinking medium	В
	frequency.	
WFS_BIO_GUIDANCE_QUICK_FLASH	The light is blinking quickly.	В
WFS_BIO_GUIDANCE_CONTINUOUS	The light is turned on	В
	continuous (steady).	
WFS_BIO_GUIDANCE_RED	The light is red.	C
WFS_BIO_GUIDANCE_GREEN	The light is green.	C
WFS_BIO_GUIDANCE_YELLOW	The light is yellow.	C
WFS_BIO_GUIDANCE_BLUE	The light is blue.	C
WFS_BIO_GUIDANCE_CYAN	The light is cyan.	C