SPÉCIFICATION TECHNIQUE

ISO/TS 14521

Première édition 2020-04

Engrenages — Calcul de la capacité de charge des engrenages à vis

Gears — Calculation of load capacity of worm gears

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/TS 14521:2020 https://standards.iteh.ai/catalog/standards/sist/d09c2c9b-feaa-4504-9a3a-15de51b1bbd6/iso-ts-14521-2020

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/TS 14521:2020 https://standards.iteh.ai/catalog/standards/sist/d09c2c9b-feaa-4504-9a3a-15de51b1bbd6/iso-ts-14521-2020

DOCUMENT PROTÉGÉ PAR COPYRIGHT

© ISO 2020

Tous droits réservés. Sauf prescription différente ou nécessité dans le contexte de sa mise en œuvre, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie, ou la diffusion sur l'internet ou sur un intranet, sans autorisation écrite préalable. Une autorisation peut être demandée à l'ISO à l'adresse ci-après ou au comité membre de l'ISO dans le pays du demandeur.

ISO copyright office Case postale 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Genève Tél.: +41 22 749 01 11

Fax: +41 22 749 09 47 E-mail: copyright@iso.org

Web: www.iso.org

Publié en Suisse

So	mma	ire	Page
Avai	nt-prop	OS	vi
Intr	oductio	n	vii
1	Dom	aine d'application	1
2		rences normatives	
3	3.1	nes, définitions et symboles Termes et définitions	1 1
	3.2	Symboles	
4	Cons	sidérations générales	
T	4.1	Critères d'évaluation de la capacité de charge des engrenages à vis	
	4.2	Bases d'établissement de la méthode	9
	4.3	Concept de paramètres absolus et relatifs	9
	4.4	Applicabilité	
	4.5	ValiditéConsidération sur la méthode	
	4.6 4.7	Méthodes de calcul A, B, C	
	1.7	4.7.1 Généralités relatives aux méthodes A, B et C	
		4.7.2 Notes concernant les formules numériques	
		4.7.3 Conditions fondamentales, interaction	13
	4.0	4.7.4 Autres notes Engrenage de référence standard R.D. P.R.E.V. E.V.	14
	4.8		
5	Don	nées exigées pour le salcul dards iteh ai) Variables d'entrée	14
	5.1	Variables d'entrée	14
	5.2	Coefficients de sécurité <u>ISO/TS 14521:2020</u> es, vitesses et paramètres pour le calcul des contraintes 9838	16
6	Forc	es, vitesses et paramètres pour le calcul des contraintes 9a3a	16
	6.1	Généralités 15de51b1bbd6/iso-ts-14521-2020	16
	6.2	Forces exercées sur la denture 6.2.1 Facteur d'application	
		6.2.2 Facteur dynamique	
		6.2.3 Facteur de distribution de la charge	
		6.2.4 Composantes des forces exercées sur la denture	17
	6.3	Vitesse de glissement au diamètre de référence	
	6.4	Paramètres physiques	
		6.4.1 Généralités relatives aux paramètres physiques6.4.2 Paramètre applicable à la pression moyenne de Hertz	
		6.4.3 Paramètre applicable à l'épaisseur moyenne du film lubrifiant	
		6.4.4 Paramètre applicable à la longueur de glissement moyenne	
	6.5	Calcul de la contrainte moyenne de contact	23
	6.6	Calcul de l'épaisseur moyenne du film lubrifiant	
	6.7	Calcul du parcours d'usure	
	6.8	Calcul de la viscosité cinématique du lubrifiant	
7		lement et perte de puissance	
	7.1 7.2	Généralités	
	1.2	Rendement total	
		7.2.2 Méthode B.	
	7.3	Perte de puissance totale	
		7.3.1 Méthodes de calcul	26
		7.3.2 Perte de puissance à vide	
		7.3.3 Perte de puissance dans les paliers	
		7.3.4 Perte de puissance dans les joints d'étanchéité7.3.5 Adaptation de la méthode de calcul à un essai spécifique	
	7.4	Rendement d'engrenage	

ISO/TS 14521:2020(F)

		7.4.1 Calcul du rendement	27
		7.4.2 Coefficient de frottement de base, μ_{OT} , de l'engrenage de référence standard	28
		7.4.3 Facteur de dimension	
		7.4.4 Facteur de géométrie 7.4.5 Facteur matériau 7.4.5	
		7.4.6 Facteur de rugosité	
		7.4.7 Adaptation de la méthode de calcul à un essai spécifique	
	7.5	Perte de puissance d'engrènement	
		7.5.1 Méthode A	
		7.5.2 Méthode B	
		7.5.3 Méthode C	
8	_	cité de charge à l'usure	
	8.1 8.2	GénéralitésCoefficient de sécurité à l'usure	
	8.3	Usure attendue	
	0.0	8.3.1 Méthode A	
		8.3.2 Méthodes B, C	
	8.4	Usure admissible	
	8.5	Adaptation de la méthode de calcul à un essai spécifique	
9		bilité de surface (résistance à la formation d'écaillages)	39
	9.1	Généralités	
	9.2 9.3	Contrainte de contact réelle	39 39
	7.5	Contrainte de contact réelle	39
		9.3.2 Méthodes B, C	39
	9.4	Valeur limite de la contrainte de contact (18.11eh.21)	39
	9.5	Adaptation de la méthode de calcul à un essai spécifique	
10	Défle	xion ISO/TS 14521:2020 Généralités https://standards.iteh.ai/catalog/standards/sist/d09c2c9b-feaa-4504-9a3a-	41
	10.1	Généralités https://standards.iteh.ai/catalog/standards/sist/d09c2c9b-feaa-4504-9a3a-	41
	10.2 10.3	Coefficient de sécurité à la déflexion bd6/iso-ts-14521-2020 Déflexion réelle	
	10.5	10.3.1 Méthode A	
		10.3.2 Méthode B	
		10.3.3 Méthode C	
	10.4	Valeur limite de déflexion	42
11	Résis	tance en pied de dent	
	11.1	Coefficient de sécurité pour la rupture de denture	
	11.2	Contrainte réelle en pied de dent	
		11.2.1 Méthode A	
		11.2.3 Méthode C	
	11.3	Valeur limite de la contrainte de cisaillement en pied de dent	
		11.3.1 Généralités	44
		11.3.2 Limite d'endurance au cisaillement, $\tau_{\text{F lim T}}$	44
	11.4	11.3.3 Facteur de durée de vie, $Y_{\rm NL}$	······45
40		• •	
12	12.1	icient de sécurité en température	
	12.1	12.1.1 Généralités	
		12.1.2 Détermination de la température du bain d'huile	
		12.1.3 Valeurs limites	49
	12.2	Coefficient de sécurité en température pour la lubrification par injection d'huile	
		12.2.1 Généralités	
4.0	F /		
13	Déter	mination de la température de masse de la roue	50

13.1 Tem	pérature de masse de la roue avec lubrification par barbotage	50
13.1		
13.1		
13.1		
13.1		
	pérature de masse de la roue avec lubrification par injection	
13.2 13.2		
13.2		
13.2		
Annexe A (informa	ative) Notes concernant les paramètres physiques	53
Annexe B (normat	ive) Méthodes de détermination des paramètres	54
Annexe C (normat	ive) Épaisseur du film lubrifiant conformément à la théorie de la	
lubrification	on élasto-hydrodynamique (EHL)	59
Annexe D (normat	ive) Définitions du parcours d'usure	61
Annexe E (informa	tive) Notes concernant le calcul de l'usure	64
Annexe F (informa	tive) Notes concernant la résistance au pied de dent	65
	ative) Adaptation des formules pour l'engrenage de référence à des	
résultats d	l'essais	66
	ative) Estimation de la durée de vie des engrenages à vis avec un risque	
élevé d'end	lommagement par formation d'écaillages VIII E VIII	69
Annexe J (informa	tive) Exemples (Standards iteh ai) tive) Exemples de capacité de charge limite dans une plage de conditions	
de fonction	nnement	87
	.bttps://standards.iteh.ai/catalog/standards/sist/d09c2c9b-feaa-4504-9a3a	
	15do51b1bbd6/iso to 14521 2020	

© ISO 2020 – Tous droits réservés

Avant-propos

L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes nationaux de normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est en général confiée aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec l'ISO participent également aux travaux. L'ISO collabore étroitement avec la Commission électrotechnique internationale (IEC) en ce qui concerne la normalisation électrotechnique.

Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier, de prendre note des différents critères d'approbation requis pour les différents types de documents ISO. Le présent document a été rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2 (voir www.iso.org/directives).

L'attention est attirée sur le fait que certains des éléments du présent document peuvent faire l'objet de droits de propriété intellectuelle ou de droits analogues. L'ISO ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de propriété et averti de leur existence. Les détails concernant les références aux droits de propriété intellectuelle ou autres droits analogues identifiés lors de l'élaboration du document sont indiqués dans l'Introduction et/ou dans la liste des déclarations de brevets reçues par l'ISO (voir www.iso.org/brevets).

Les appellations commerciales éventuellement mentionnées dans le présent document sont données pour information, par souci de commodité, à l'intention des utilisateurs et ne sauraient constituer un engagement.

(standards.iteh.ai)

Pour une explication de la nature volontaire des normes, la signification des termes et expressions spécifiques de l'ISO liés à l'évaluation de la conformité, ou pour toute information au sujet de l'adhésion de l'ISO aux principes de l'Organisation mondiale du commerce (OMC) concernant les obstacles techniques au commerce (OTC), voir www.iso.org/avant-propos.2020

Le présent document a été élaboré par le comité technique ISO/TC 60, *Engrenages*, sous-comité SC 1, *Nomenclature et engrenages à vis*.

Cette première édition annule et remplace l'ISO/TR 14521:2010, qui a fait l'objet d'une révision technique.

Les principales modifications par rapport à l'édition précédente sont les suivantes:

— <u>l'Article 6</u> portant sur la géométrie a été supprimé et l'ISO/TR 10828 a été cité en référence.

Il convient d'adresser tout retour d'expérience ou toute question concernant le présent document à l'organisme national de normalisation de l'utilisateur. Une liste complète desdits organismes est disponible sur www.iso.org/members.html.

Introduction

Le présent document a été élaboré pour l'évaluation et le calcul de la capacité de charge des engrenages à vis cylindriques ouverts ou fermés, et des motoréducteurs engrenages à vis comportant des arbres de sortie pleins ou creux.

Le présent document s'applique uniquement lorsque les flancs des dentures de roue creuse sont conjugués à ceux des filets de vis.

Les formes particulières des profils de crémaillère de la tête au pied n'affectent pas la conjugaison lorsque la vis et les fraises-mères pour le taillage des dents de la roue creuse ont les mêmes profils, de sorte que le contact entre les roues creuses et les vis est approprié et les mouvements des engrenages à vis sont uniformes.

Le présent document peut s'appliquer aux engrenages à vis avec vis hélicoïdales cylindriques tels que définis dans l'ISO/TR 10828 et ayant les profils de filets suivants: A, C, I, N, K.

À l'exception des éléments mentionnés dans les trois précédents alinéas, aucune restriction ne s'applique aux méthodes de fabrication utilisées.

Afin d'assurer une conjugaison appropriée et du fait de l'existence des nombreux profils de filets différents, il est généralement préférable que les vis et les roues creuses soient fournies par le même fabricant.

Dans le présent document, le couple admissible d'un engrenage à vis est limité soit par la prise en compte de la contrainte de surface (désignée, pour des raisons pratiques, comme usure ou écaillage) ou de la contrainte de flexion (désignée comme la résistance) à la fois dans les filets de vis, et les dentures des roues creuses, de la déflexion de la vis ou de la limitation thermique.

Par conséquent, la capacité de charge <u>d'un couple d'engrenages</u> est déterminée au moyen de calculs prenant en compte <u>tous les critères décrits dans le domaine d'application et en 6.4</u>. Le couple admissible sur la roue creuse est la plus faible <u>des valeurs calculées</u>, <u>2020</u>

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/TS 14521:2020 https://standards.iteh.ai/catalog/standards/sist/d09c2c9b-feaa-4504-9a3a-15de51b1bbd6/iso-ts-14521-2020

Engrenages — Calcul de la capacité de charge des engrenages à vis

1 Domaine d'application

Le présent document définit des formules permettant de calculer la capacité de charge des engrenages à vis cylindriques et couvre les charges limites de base associées à l'usure, la formation d'écaillages, la déflexion de la vis, la rupture de dent et la température. Le grippage et les autres modes de défaillance ne sont pas couverts par le présent document.

La charge limite et les procédures de conception ne sont valables que pour des vitesses de glissement à la surface de denture, \vec{v}_g , inférieures ou égales à 25 m/s et des rapports de conduite supérieurs à 2,1.

Pour l'usure, la charge limite et les procédures de conception ne sont valables que pour des vitesses de glissement à la surface de denture supérieures à 0.1~m/s. Les règles et recommandations pour le dimensionnement, le choix des lubrifiants ou des matériaux donnés dans le présent document s'appliquent uniquement aux entraxes de 50~mm et plus. Pour les entraxes inférieurs à 50~mm, la méthode A s'applique.

Le choix des méthodes de calcul appropriées requiert des connaissances et de l'expérience. Le présent document est destiné à être utilisé par des concepteurs d'engrenages expérimentés qui peuvent émettre des jugements avisés concernant les facteurs impliqués. Il n'est pas destiné aux ingénieurs n'ayant pas l'expérience nécessaire. Voir 4.7. (standards.iteh.ai)

AVERTISSEMENT — La géométrie des engrenages à vis est complexe, c'est pourquoi l'utilisateur du présent document est amené à s'assurer qu'une géométrie de fonctionnement valide a été établie.

https://standards.iteh.ai/catalog/standards/sist/d09c2c9b-feaa-4504-9a3a-15de51b1bbd6/iso-ts-14521-2020

2 Références normatives

Les documents suivants sont cités dans le texte de sorte qu'ils constituent, pour tout ou partie de leur contenu, des exigences du présent document. Pour les références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du document de référence s'applique (y compris les éventuels amendements).

ISO 1122-1, Vocabulaire des engrenages — Partie 1: Définitions géométriques

ISO 1122-2, Vocabulaire des engrenages — Partie 2: Définitions géométriques relatives aux engrenages à vis

ISO 6336-6, Calcul de la capacité de charge des engrenages cylindriques à dentures droite et hélicoïdale — Partie 6: Calcul de la durée de vie en service sous charge variable

DIN 3974-1, Accuracy of worms and worm gears — Part 1: General bases

DIN 3974-2, Accuracy of worms and worm gears — Part 2: Tolerances for individual errors

3 Termes, définitions et symboles

3.1 Termes et définitions

Pour les besoins du présent document, les termes et les définitions de l'ISO 1122-1, l'ISO 1122-2 ainsi que les suivants s'appliquent.

ISO/TS 14521:2020(F)

L'ISO et l'IEC tiennent à jour des bases de données terminologiques destinées à être utilisées en normalisation, consultables aux adresses suivantes:

- ISO Online browsing platform: disponible à l'adresse https://www.iso.org/obp
- IEC Electropedia: disponible à l'adresse http://www.electropedia.org/

3.1.1

engrenage réel

train d'engrenages à vis conçu selon le présent document

3.2 Symboles

NOTE Le cas échéant, les symboles sont conformes à l'ISO 701.

Tableau 1 — Symboles pour les engrenages à vis

Symboles	Description	Unité	Figure	Formule
а	entraxe	mm	<u>Figure 1</u>	
a_1	entraxe de l'engrenage de référence standard	mm	<u>Figure 1</u>	
a_0, a_1, a_2	coefficients de température du bain d'huile	_		(118) à (124)
a_{T}	entraxe de l'engrenage de référence normalisé standard	mm	<u>Figure 1</u>	
a_{V}	entraxe d'un engrenage dans des conditions de fonctionnement ou d'essais expérimentaux	PREV	Tableau 4	
$b_{2 m H}$	largeur effective de denture de roue dards.i	telmmi)		
$b_{ m 2H,std}$	largeur effective de denture de roue creuse standard ISO/TS 14521:2	mm 020		(10)
$b_{ m 2R}$	largeur de jante de/la nouels.iteh.ai/catalog/standards/sis		ıa-4504-9a3a-	(132)
$b_{ m H}$	demi-largeur de contact de Hertzle51b1bbd6/iso-ts-1	4521 mm0	<u>Annexe D</u>	(<u>D.2</u>)
c_{k}	Coefficient de transfert thermique			(133)
$c_{ m oil}$	chaleur spécifique de l'huile	Ws/(kg.K)		(128)
	(pour le calcul de la température avec lubrification par injection)			
c_{α}	valeur approchée de l'exposant de pression - viscosité α	m ² /N		(22)/(24)
d_{a1}	diamètre de tête de la vis	mm		(89)
d_{a2}	diamètre de gorge de la roue creuse	mm		
$d_{ m e2}$	diamètre extérieur de la roue creuse	mm		
$\vec{\mathrm{d}}F$	force partielle transmise par un segment de la ligne de contact	N	Figure B.2	(<u>B.3</u>)
d <i>l</i>	longueur d'un segment de la ligne de contact	mm		(<u>B.1</u>) à (<u>B.6</u>)
$d_{\mathrm{f}1}$	diamètre de pied de la vis	mm		(104)
$d_{\mathrm{f}2}$	diamètre de pied de la roue creuse	mm		(111)
d_{m1}	diamètre de référence de la vis	mm		
d_{m2}	diamètre de référence de la roue creuse	mm		(41) à (43)
$d_{ m m1T}$	diamètre de référence de la vis, pour l'engrenage de référence standard	mm	Tableau 4	(44), (45)
$d_{ m m2T}$	diamètre de référence de la roue, pour l'engre- nage de référence standard	mm	Tableau 4	
$\vec{e}_{_X}$	vecteur unitaire orienté suivant l'axe x	mm		(<u>B.4</u>)

Symboles	Description	Unité	Figure	Formule
$f_{ m h}$	facteur de largeur de la roue creuse pour le paramètre d'épaisseur moyenne minimale du film lubrifiant	_		(16)
f_{p}	facteur de largeur de la roue creuse pour le para- mètre de contrainte moyenne de Hertz	_		(17)
Δf	écart relatif entre une quantité concernant l'engrenage étudié et l'engrenage de référence	_	Figure 1	
Δf_T	écart relatif entre l'entraxe concernant l'engre- nage étudié et l'engrenage de référence standard	_	Figure 1	
Δf_V	écart relatif entre l'entraxe concernant l'engre- nage étudié et un engrenage en exploitation ou dont les essais sont disponibles	_	Figure 1	
h_{am1}	saillie de référence de la vis dans le plan axial	mm		(86)
h_{\min}	épaisseur minimale du film lubrifiant	μm		(C.1)
h _{min m}	épaisseur moyenne minimale du film lubrifiant	μm		(21)
h*	paramètre applicable à l'épaisseur moyenne minimale du film lubrifiant	_		(14)/(15)
h_{T}^*	paramètre applicable à l'épaisseur moyenne minimale du film lubrifiant de l'engrenage de référence standard		Tableau 4	
k	constante du lubrifiant	1/K	V	(27)/(29)
l_1	espacement des paliers d'arbres de la vis iteh.	i) mm		(103)
l_{11}, l_{12}	distance des paliers d'arbre de la vis	mm	<u>Figure 5</u>	(103)
$m_{\mathrm{x}1}$	module axial ISO/TS 14521:2020	mm		
$\Delta m_{ m lim}$	limite de perte de materiau	9b-feaa-4504-9 mg	9a3a- 	(88)
Δs	perte d'épaisseur de denture	mm		(111)
$\Delta s_{\rm lim}$	perte d'épaisseur de denture admissible	mm		(87)
→ n	vecteur normal			(<u>B.5</u>)
n_1	vitesse de rotation de l'arbre de vis sans fin	min ⁻¹		
p_{H}	pression de Hertz	N/mm ²		(<u>B.1</u>)/(<u>B.6</u>)
$p_{ m Hm}$	pression de Hertz; valeur moyenne sur toute la zone de contact	N/mm ²		(<u>B.7</u>)
p_{m}^{*}	paramètre applicable à la pression moyenne de Hertz	_		(11)/(12) (B.8)
p_{mT}^*	paramètre applicable à la pression moyenne de Hertz de l'engrenage de référence standard	_	<u>Tableau 4</u>	
q_1	coefficient diamétral	mm		
\vec{r}	rayon entre le point de de contact B et l'axe de la roue creuse	mm		(<u>B.4</u>)
$s_{\rm f2}$	épaisseur moyenne de la denture en pied de dent de la roue dans le plan médian	mm		(111)
s _{ft2}	épaisseur moyenne de la denture en pied de dent de la roue dans le plan médian	mm		(111)
$s_{ m gB}$	longueur de glissement des flancs de vis dans la zone de contact de Hertz du flanc de roue par nombre de cycles de la roue, autour du point de contact (valeur locale)	mm		(D.3)/(D.5)
$s_{ m gm}$	longueur de glissement moyenne	mm		(<u>D.7</u>)

Symboles	Description	Unité	Figure	Formule
s_{m2}	épaisseur de denture au diamètre de référence de la roue creuse	mm		(111)
s_{K}	épaisseur de jante	mm	<u>Figure 6</u>	(113)
$s_{ m Wm}$	parcours d'usure au cours de la durée de vie prévue exigée	mm		(30)/(D.1)
s_{mx1}	épaisseur des filets de vis en section axiale	mm		
s_{mx1}^*	coefficient d'épaisseur des filets de vis en section axiale	_		(111)
<i>s</i> *	paramètre applicable à la longueur de glisse- ment moyenne			(17)/(18)/(D.8)
s_{T}^*	paramètre applicable à la longueur de glissement moyenne de l'engrenage de référence standard		<u>Tableau 4</u>	
Δs	perte d'épaisseur de denture			(111)
Δs_{lim}	perte d'épaisseur de denture admissible			(87)/(111)
$t_{ m contact}$	temps de contact	S		(<u>D.2</u>)
и	rapport d'engrenage			<u>(1)</u>
u_{T}	rapport d'engrenage de l'engrenage de référence standard		<u>Tableau 4</u>	
→ V1	vitesse d'un point du flanc de la vis	Pm/sFX	Figure B.1	
\vec{v}_2	vitesse d'un point du flanc d'une roue creuse	m/s	Figure B.1	
v_{1n}	composante de vitesse de la vis perpendiculaire à la ligne de contact	m/s	Figure B.2	
v_{2n}	composante de vitesse de la roue perpendiculaire à la ligne de contact	020 st/d09c2c9b-fea 4521-2020	1a-45 94-9 a3a-	(<u>D.2</u>)
$\vec{v}_{ m gB}$	vitesse de glissement perpendiculaire à la ligne de contact dans la direction du flanc	m/s		(<u>D.3</u>)/(<u>D.5</u>)/ (<u>D.6</u>)
$v_{ m g}$	vitesse de glissement au diamètre de référence	m/s		(9)/(49)/(50)/ (51)/(H.2)/ (H.3)/(H.5)
$v_{\rm ref}$	vitesse de glissement de référence	m/s		(<u>H.2</u>) à (<u>H.5</u>)
$v_{\Sigma n}$	vitesse totale normale à la ligne de contact	m/s		(11) (C.4)
<i>x</i> ₂	coefficient de déport de la roue creuse	_		
z_1	nombre de filets de la vis	_		
z_2	nombre de dents de la roue creuse	_		
A	coefficient pour la viscosité cinématique			(33)
$A_{ m fl}$	surface totale de flancs de la roue creuse	mm ²		(89)
A_{R}	surface d'échange principale du train d'engrenages	m ²		(132)
В	coefficient pour la viscosité cinématique	_		(34)
В	coefficient pour h*	mm		(14)
E_1	module d'élasticité de la vis	N/mm ²		
E_2	module d'élasticité de la roue creuse	N/mm ²		
$E_{\rm red}$	module d'élasticité équivalent	N/mm ²	Tableau 4	(20)
$F_{\rm xm1}$	force axiale exercée sur l'arbre de la vis	N		(4)/(7)
$F_{\rm xm2}$	force axiale exercée sur la roue creuse	N		(3)/(6)
$F_{\rm rm1}$	force radiale exercée sur l'arbre de la vis	N		(5)
$F_{\rm rm2}$	force radiale exercée sur la roue creuse	N		(11)

Symboles	Description	Unité	Figure	Formule
$F_{\rm tm1}$	force circonférentielle ou tangentielle exercée sur l'arbre de la vis	N		(4)/(6)
$F_{\rm tm2}$	force circonférentielle ou tangentielle exercée sur la roue creuse	N		(3)/(7)
d <i>F</i> / d <i>l</i>	charge spécifique	N/mm		(<u>C.5</u>)
J_{OT}	intensité d'usure de référence	_	Figure 4	(69) à (79)
$J_{\text{OI}}, J_{\text{OII}}, J_{\text{OIII}}$	intensité d'usure de référence pour les étapes I, II, III	_		(<u>H.6</u>) à (<u>H.7</u>)
J_{W}	intensité d'usure	_		(68)
J_{WP}	intensité d'usure	_		(<u>H.6</u>)
K _n	facteur de vitesse de rotation/température de masse de la roue	_		(135)
$K_{\mathrm{H}\alpha}$	facteur de distribution de la charge transversale	_		6.2.3
$K_{\mathrm{H}\beta}$	facteur de distribution de la charge longitudinale	_		6.2.3
K_{S}	facteur de dimension/température de masse de la roue	_		(137)
K_{A}	facteur d'application	_		6.2.1
$K_{\rm v}$	facteur dynamique	_		<u>6.2.2</u>
K_{W}	paramètre d'épaisseur du film lubrifiant DR	EV+EV	V	(80)
K_{v}	facteur de viscosité/température de masse de la roue (standards.iteh.a	ai)	·	(136)
K_1	facteur	_		(<u>G.5</u>)
$L_{ m h}$	durée de vie <u>ISO/TS 14521:2020</u>	h		
$N_{ m L}$	nombre de cycles de charge sur la roue creuse	9b-fea <u>a-</u> 4504-9	9a3a-	(31)
$N_{ m LI}$, $N_{ m LII}$, $N_{ m LIII}$	nombre de cycles de charge sur la roue creuse pour les étapes I à III	_		(<u>H.1</u>)
$N_{\rm S}$	nombre de démarrages par heure	_		(70)
P_1	puissance d'entrée sur l'arbre de vis sans fin	W		
P_2	puissance de sortie sur l'arbre de la roue creuse	W		
P_{K}	capacité de refroidissement de l'huile avec lubrification par injection	W		(127) (125)
P_{V}	perte de puissance totale du réducteur à roue et vis	W		(38)
P_{VO}	perte de puissance à vide	W		(38)/(39)/(G.1)
$P_{\mathrm{Vz}1\text{-}2}$	perte de puissance d'engrènement en réducteur	W		(62)
$P_{\text{Vz2-1}}$	perte de puissance d'engrènement en multiplica- teur	W		(64)
$P_{ m VD}$	perte de la puissance dans les joints d'étanchéité	W		(44)/(45)
$P_{ m VLP}$	perte de puissance dans les paliers due à la charge	W		(40) à (43)
$Q_{ m oil}$	débit d'injection	m³/s		(127)
Ra_1	rugosité moyenne arithmétique pour la vis	μm	<u>Tableau 4</u>	
Ra_{T}	rugosité moyenne arithmétique pour l'engrenage de référence	μm		(62)
Rz_1	profondeur de rugosité moyenne	μm		7.4.6
S_{F}	coefficient de sécurité pour la rupture de denture	_		(106)
$S_{\rm Fmin}$	coefficient de sécurité minimum pour la rupture de denture	_		(107)

Symboles	Description	Unité	Figure	Formule
S_{H}	coefficient de sécurité pour la formation d'écaillages	_		(91)
S_{Hmin}	coefficient de sécurité minimal pour la formation d'écaillages	_		<u>(92)</u>
S_{T}	coefficient de sécurité en température	_		(115)/(125)
$S_{ m Tmin}$	coefficient de sécurité en température minimal	_		(116)/(126)
S_{W}	coefficient de sécurité à l'usure	_		(65)
$S_{ m Wmin}$	coefficient de sécurité à l'usure minimum	_		(66)
S_{δ}	coefficient de sécurité à la déflexion	_		(101)
$S_{\delta min}$	limite du coefficient de sécurité à la déflexion	_		(102)
T_1	couple d'entraînement de l'arbre de la vis	Nm		(1)
T_{1N}	couple d'entraînement nominal de l'arbre de la vis	Nm		(1)
T_2	couple de sortie de la roue creuse	Nm		(2)/(B.4)/(B.5)
T_{2N}	couple de sortie nominal de la roue creuse	Nm		(2)
$V_{\rm SUMn}$	somme des vitesses au point de contact			(<u>C.1</u>)
W_{H}	_	_		(84)/(85)
$W_{ m ML}$	matériau - facteur lubrifiant	_	Tableau 7	
$W_{\rm NS}$	facteur de démarrage	DDEI		(83)
$W_{\rm P}$	facteur d'endommagement			(<u>H.8</u>)
$W_{\rm S}$	facteur de structure de lubrifatandards.i	teh.ai)		(81)/(82)
$Y_{\rm F}$	facteur de forme/rupture de denture	_		(110)
$Y_{\rm G}$	facteur de géométrie/coefficient de frottement 212	020		(59)/(60)
$Y_{\rm K}$	facteur d'épaisseur de jante/rupture de denture	t/d09c2c9b-fe a 4521 <u>-20</u> 20	ia-4504-9a3a-	(113)
$Y_{\rm NL}$	facteur de durée de vie/rupture de denture	+321-2020 —	Figure 7 a)/b)	Tableau 11
$Y_{\rm R}$	facteur de rugosité/coefficient de frottement	_		(61)/(62)
$Y_{\rm S}$	facteur de dimension/coefficient de frottement	_		(57)/(58)
Y_{W}	facteur matériau/coefficient de frottement	_		
Y_{ϵ}	facteur de conduite/rupture de denture	_		(109)
Υγ	facteur de pas hélicoïdal/rupture de denture	_		(112)
$Z_{ m h}$	facteur de durée de vie/formation d'écaillages	_		(94)
$Z_{\rm oil}$	facteur de lubrifiant/formation d'écaillages	_		(100)
$Z_{\rm S}$	facteur de dimension/formation d'écaillages	_		(96)/(97)
<u>s</u>	facteur de rapport d'engrenage	_		(98)/99)
$Z_{ m v}$	facteur de vitesse/formation d'écaillages	_		(95)
α	facteur de pression et de viscosité	m ² /N		6.6
$\alpha_{ m L}$	coefficient d'échange thermique pour les den- tures de roue immergées	W/(m ² K)		(133)
$\alpha_{\rm n}$	angle de pression normal	0		
α_0	angle de pression normal	0		(5), (86)
$\gamma_{\rm m1}$	angle d'inclinaison de l'hélice de référence de la vis	0		(86)
$\delta_{ m lim}$	valeur limite de déflexion	mm		(105)
$\delta_{ m m}$	déflexion subie	mm		(103)/(104)
$\delta_{ m Wn}$	perte de flanc de la roue par usure abrasive dans la section normale	mm		(67)
$\delta_{ m Wlim}$	valeur limite de la perte de flanc	mm		(90)
∨W IIm	, albar minto de la perte de mane	111111		(20)

Symboles	Description	Unité	Figure	Formule
δ_{Wlimn}	valeur limite de la perte de flanc en section normale	mm		(86) à (88)
$\eta_{ m ges}$	rendement total en réducteur	_		(35)
$\eta_{\mathrm{ges1-2}}$	rendement total si la vis est menante	_		(35)
$\eta_{\mathrm{ges2-1}}$	rendement total si la roue creuse est menante	_		(36)
$\eta'_{ m ges}$	rendement total en multiplicateur	_		(36)
$\eta_{\mathrm{z}1\text{-}2}$	rendement d'engrenage en réducteur	_		(46)/(63)
$\eta_{\mathrm{z2-1}}$	rendement d'engrenage en multiplicateur	_		(47)/(64)
$\eta_{0 ext{M}}$	viscosité dynamique du lubrifiant à la pression ambiante et à la température de masse de la roue creuse	Ns/m²		(25) (C.1)
θ	température	°C		
$\Delta \theta$	augmentation de la température de la roue par rapport à la température du bain d'huile	°C		(131)
$ heta_{ m in}$	température d'entrée de l'huile	°C		(129)
θ_0	température ambiante	°C		
$ heta_{ m oil}$	température d'injection	°C		(129)
$\Delta heta_{ m oil}$	différence de température d'huile entre l'entrée et la sortie du système de refroidissement	°C FVFV	V	(129)
$ heta_{ exttt{M}}$	température de masse de la roue	°C		(130)/(134)
$ heta_{ extsf{S}}$	température du bain d'huile dar d's. Iten.	·C		(117)/(119)
$ heta_{ ext{S lim}}$	valeur limite de la température du bain d'huile	°C		(115)
$\mu_{0\mathrm{T}}$	coefficient de frottement de base	9b-feaa-4504-	Da3a-	(49) à (52)
$\mu_{ m zm}$	coefficient de frottement moyen de la denture 1-202	20 —		(48)
ν_1	coefficient de POISSON de la vis	_		(20)
ν_2	coefficient de POISSON de la roue creuse	_		(20)
$ u_{\theta}$	viscosité cinématique à la température de l'huile θ	mm ² /s		(32)
v_{40}	viscosité cinématique à 40 °C	mm ² /s		(32)
v_{100}	viscosité cinématique à 100 °C	mm ² /s		
$ u_{ m M}$	viscosité cinématique à la température de masse de la roue	mm ² /s		(25)
ρ_1, ρ_2	rayon de courbure local	mm		(<u>B.2</u>)
$ ho_{ m oil}$	densité du lubrifiant	kg/dm ³		(127)
$ ho_{ m g}$	angle de frottement pour le coefficient de frottement			(5)
$ ho_{ m oil15}$	densité du lubrifiant à 15 °C	kg/dm ³		(25)
$ ho_{ m oilM}$	densité du lubrifiant à la température de masse de la roue	kg/dm ³		(26)
$ ho_{ m red}$	rayon de courbure équivalent	mm		(<u>B.2</u>)
$ ho_{ m z}$	angle de frottement du coefficient de frottement de la denture	0		<u>(5)</u>
$ ho_{Rad}$	densité du matériau de la roue	mg/mm ³	<u>Tableau 8</u>	(88)
$\sigma_{ m HlimT}$	résistance à la formation d'écaillages	N/mm ²	<u>Tableau 9</u>	
$\sigma_{ m Hm}$	contrainte de contact moyenne	N/mm ²		(19)(91)
$\sigma_{ m HG}$	valeur limite de la contrainte de contact moyenne	N/mm ²		(93)(91)
$ au_{ m F}$	contrainte de cisaillement en pied de dent	N/mm ²		(108)(106)