

Designation: D2805-96a(Reapproved2003) Designation: D2805 - 11

Standard Test Method for Hiding Power of Paints by Reflectometry¹

This standard is issued under the fixed designation D2805; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

INTRODUCTION

Using equations derived from Kubelka-Munk turbid media theory (1-4)² (see Annex A1), the reflectance of a coating can be predicted for any film thickness from measurements made at only one. On this basis several rapid and accurate test methods (5, 6) have been developed for determining hiding power. In the past such test methods have been considered difficult due to complexities, apparent and actual, in the treatment of data. The present test method has been simplified in this respect, primarily by adapting it fully for computer calculations.

Although the use of broad-band reflectometry makes this test method theoretically valid only for nonchromatic (white or gray) colors, good agreement has been obtained with chromatic paints as well. This is undoubtedly because the experimental measurements are made fairly close to the hiding power end point so that the Kubelka-Munk extrapolation and thus any associated error is relatively small.

This test method is therefore recommended without restriction as to color.

1. Scope

- 1.1 This test method covers the determination, without reference to a material paint standard, of the hiding power of air dry coatings with Y tristimulus values greater than 15 %. With appropriate modification, it can also be used to test baking finishes.
 - 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
- 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

- 2.1 ASTM Standards:³
- D344 Test Method for Relative Hiding Power of Paints by the Visual Evaluation of Brushouts
- D1475 Test Method For Density of Liquid Coatings, Inks, and Related Products
- D3924 Specification for Environment for Conditioning and Testing Paint, Varnish, Lacquer, and Related Materials
- E284 Terminology of Appearance
- E1247 Practice for Detecting Fluorescence in Object-Color Specimens by Spectrophotometry
- E1331 Test Method for Reflectance Factor and Color by Spectrophotometry Using Hemispherical Geometry
- E1347 Test Method for Color and Color-Difference Measurement by Tristimulus Colorimetry
- E1349 Test Method for Reflectance Factor and Color by Spectrophotometry Using Bidirectional (45:0 or 0:45) Geometry

3. Terminology

- 3.1 Definitions—For definitions used in this test method, see Terminology E284.
- 3.2 Definitions of Terms Specific to This Standard:
- 3.2.1 contrast ratio contrast ratio, n—the ratio of the reflectance of a film on a black substrate to that of an identical film on a

1

¹ This test method is under the jurisdiction of ASTM Committee D01 on Paint and Related Coatings, Materials, and Applications and is the direct responsibility of Subcommittee D01.26 on Optical Properties.

Current edition approved $\frac{\text{May}}{10}$, $\frac{2003}{10}$. $\frac{10}{10}$, $\frac{2011}{10}$. Published June $\frac{2003}{2011}$. Originally approved in 1969. Last previous edition approved in $\frac{19962003}{2003}$ as $\frac{1996}{10}$. DOI: $\frac{10.1520}{10}$

² The boldface numbers in parentheses refer to the list of references at the end of this standard.

³ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

white substrate.

iTeh Standards (https://standards.iteh.ai) Document Preview

ASTM D2805-11

https://standards.iteh.ai/catalog/standards/sist/3cd11f53-8b30-4175-a09f-e77d68d57792/astm-d2805-11

3.2.1.1 $C_{W}W$, n—the contrast ratio with a white substrate of reflectance W.

Thus:
$$C_W = R_0/R_W$$

3.2.1.2 ϵC , n—the contrast ratio with a white substrate for which W = 0.80.

Thus:
$$C = R_0/R_{0.80}$$

- 3.2.2 *reflectance* reflectance, n—the daylight luminous diffuse reflectance factor (specular reflection excluded). Also referred to in this test method as the *Y*-tristimulus value. This value may be expressed as a percent or a decimal fraction, the latter being preferred and usually required for mathematical calculations.
- 3.2.2.1 *reflectivity,* $R_{\infty} \underline{\sim}$, \underline{n} —the reflectance of film thick enough to have the same reflectance over both a black and a white substrate.
- 3.2.2.2 $R_{\theta}0$, n—the reflectance of a film on a black surface with a reflectance of 1 % or less, which is effectively zero for the purpose of this test.
 - 3.2.2.3 \pm W, n—the reflectance of a white substrate.
 - 3.2.2.4 $R_{W}W$, n—the reflectance of a film applied on a white substrate of reflectance W.
- $3.2.2.5 \ R_{0.80}0.80, n$ —the reflectance of a film applied on a substrate having a reflectance of 80 %, which is the standard white-substrate reflectance in paint technology.
- 3.2.3 scattering coefficient, S_scattering coefficient, S, n—the ability of a material to internally scatter and thereby reflect light; expressed in this test method in the same units as spreading rate.
- 3.2.4 spreading rate, H_s preading rate, H_s p
 - 3.2.4.1 spreading rate, $H_{\underline{X}}\underline{X}$, \underline{n} —an experimentally determined value of H.
 - 3.2.4.2 spreading rate, $H_{\epsilon}C, \underline{n}$ —value of H at a specified contrast ratio C.
 - 3.2.4.3 hiding power, $H_{0.98}0.98$, n—the spreading rate at the contrast ratio C = 0.98.

Note 1—It should be emphasized that a contrast ratio of 0.98 does not represent visually complete hiding, nor does it indicate that the same contrast ratio holds at every wavelength.

4. Summary of Test Method https://standards

- 4.1 The reflectivity R_{∞} of the coating is determined from reflectance measurements on black and white hiding power charts.
- 4.2 The scattering coefficient S of the coating is determined from R_{∞} , and the reflectance R_0 and spreading rate H_X of a film applied on black glass.
 - 4.3 The hiding power, $H_{0.98}$ of the coating is calculated from the reflectivity R_{∞} and the scattering coefficient S.
 - 4.4 As an optional procedure the contrast ratio C at a specified spreading rate H_C is calculated from R_{∞} and S.

5. Significance and Use

- 5.1 This is a precise instrumental method giving results having an absolute physical significance without reference to a comparison paint. It should be used when maximum precision and minimum subjectivity are required, as in testing specification coatings or evaluating the hiding efficiency of pigments.
- 5.2 Hiding power Test Method D344 is visual instead of instrumental, and gives results that are relative to a material standard instead of absolute. It is less precise than Test Method D2805 but more closely aligned with practical painting procedures.

6. Apparatus and Materials

- 6.1 Substrates:
- 6.1.1 Black Glass Panels, minimum size 200 by 200 mm, and approximately 6-mm thick.
- 6.1.2 Black and White Paper Charts—The surface shall be smooth and level, and impervious to paint liquids. The black area shall have a maximum reflectance of 1 % and the white area a minimum reflectance of 78 %. The white area shall be non-fluorescent, as observed visually under ultra-violet illumination, or determined in accordance with Practice E1247.
 - 6.2 Balance, accurate to 0.1 mg.
- 6.3 Glass Slides—Round or square plates of thickness similar to that used for microscope specimen slides, with a minimum area of 40 cm².
- 6.4 Reflectance-Measuring Instrument⁴—One that allows only diffusely reflected, radiant flux to be incident upon the measuring element. It shall employ a photometric system, including source, filters, and receptor, that provides a response closely similar to

⁴ The sole source of manufacturer of the black Carrara glass known to the committee at this time is The Leneta Co., 15 Whitney Rd., Mahwah, NJ 07430. If you are aware of alternative suppliers, please provide this information to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend.

⁴ Conforming with Test Methods E1331, E1347, or E1349. Other methods for measuring the CIE-Y tristimulus value (specular reflection excluded) are permissible.

the product of the spectral luminous efficiency function of the CIE standard observer and source C. It shall provide readings to at least the third decimal place and permit estimation to the fourth.

- $6.5 \, Template$, with a film area approximately $100 \, \text{cm}^2$ determined to the nearest tenth. Record the exact value on Line C of the worksheet shown in Fig. 1.
- 6.6 Doctor Blade Film Applicators , width 150 mm, clearances 50, 75, 100, 125, 150, 175, and 200 μm. Note2—With doctor blades made in the United States, estimate 25 mm/in. and 25 μm/mil. Bird-type applicators are usually marked with their half elearance.
 - 6.7 Computer and Software, for solving the relevant Kubelka-Munk equations.

7. Procedure

- 7.1 General Instructions:
- 7.1.1 Film Application—Make drawdowns manually with a smooth uniform motion, at the rate of about 6 cm/s. Hold paper charts flat by a vacuum plate or other suitable device while making drawdowns.
- 7.1.2 Reflectance Measurements—Measure the reflectance of each test area at a minimum of three locations, reading or estimating to four decimal places and calculating mean values to the same. Place charts over a white surface and black glass over

⁵ The sole source of manufacturersupply of the ehartstemplate known to the committee at this time is the LenetaPaul Gardner Co., 15 Whitney Rd., Mahwah, NJ 07430. 316 N. E. First St., Pompano Beach, FL 33061. If you are aware of alternative suppliers, please provide this information to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend.

A. Paint Density, D: ______ g/mL

B. Nonvolatile Content, N: _____ (decimal fraction)

C. Template Film Area, A: ______ cm²

Chart	Ro	R _w	W	C _w	R∞
1		II St	allu	al US	
2	, ,				
3	ns://	stan	012111		en a
4					
Mean					

 $R_{\infty} = R_0/R_w$ $R_{\infty} = f(R_0, R_w, W)$ Eq A1.1 of Annex A1

E. Drawdowns on Glass:

Contrast ratio, C_

D. Drawdowns on Charts:

https://standards.iteh.a

	Panel	Ro	М, д	H_x , m ² /L	S, m ² /L	H _{0.98} , m ² /L
	1		ASTIVI	JZ603-1		
i/c	atal 2 g/st	ındards/s	st/3cd11	53-8630	-4175-a(9f-e77d6
	3					
	4					
	Mean	_		_		

 $H_x=rac{AND}{10\ M}=rac{ND}{M}$ $S=f(R_0,R_\infty,H_x)$ Eq A1.2 of Annex A1 $H_{0.96}=f(S,C,R_\infty)$ where C=0.98 Eq A1.3 of Annex A1

	$H_{0.98} = f(S, C, R_{\infty})$ where $C = 0.98$	Eq A1.3 of Annex A1	
G. Report (1) Hiding power $H_{0.98}$		m²/L	ft²/gal
(2) Reflectivity, R _∞			
(3) Scattering coefficien	ıt, S m²/L		
(4) Applicator clearance	4444444	μm	mils
(5) Contrast ratio, Cw_			
(6) Sample identification	1		
Type of paint		Color	*********
Formula No		_ Batch or sample No	
(7) Reflectometer descr	iption		
Manufacturer .		Model name	
Model No		Type	
Geometry		Aperture	
H. Alternative Hiding Power	Report:		
Specified spreading rate	o, H	m²/L	ft²/gal

FIG. 1 Work Sheet Form