INTERNATIONAL STANDARD

ISO 23905

First edition 2020-06

Cigarettes — Determination of selected phenolic compounds in cigarette mainstream smoke using HPLC-FLD

Cigarettes — Dosage de composés phénoliques sélectionnés dans le courant principal de la fumée de cigarette par CLHP-FLD

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 23905:2020 https://standards.iteh.ai/catalog/standards/sist/d0ca831f-2519-4486-b049-69eccf55d320/iso-23905-2020

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 23905:2020 https://standards.iteh.ai/catalog/standards/sist/d0ca831f-2519-4486-b049-69eccf55d320/iso-23905-2020

COPYRIGHT PROTECTED DOCUMENT

© ISO 2020

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Con	tent	S	Page					
Fore	word		iv					
Intro	ductio	n	v					
1	Scope	е	1					
2	Normative references Terms and definitions							
3	Term	s and definitions	1					
4	Princ	PrincipleApparatus						
5	•							
6		ents						
7	Preparent 7.1 7.2 7.3	General Preparation of solutions — Acetic acid, with a volume fraction of 1 % solution Preparation of standards 7.3.1 Primary phenolic compounds stock solutions 7.3.2 Secondary phenolic compounds stock solutions 7.3.3 Phenolic compounds working standards	3 3 3 3					
8	Samp	oling	4					
9	Toba	cco product preparation	4					
10	Samp 10.1 10.2 10.3	cco product preparation NDARD PREVIEW ble generation — Smoking of cigarettes General (standards.iteh.ai) Smoking machine setup Smoking (standards.iteh.ai)	4					
11	Sample analysis'standards.iteh.ai/catalog/standards/sist/d0ca831f-2519-4486-b049-							
	11.1 11.2							
		Determination						
		11.2.2 Calibration	6					
		11.2.3 Calculation						
12	Repe 12.1 12.2	atability and reproducibility General Results of the 2013 collaborative study	6					
13		rt						
	-	formative) Examples of chromatograms						
	ogranh	,	13					

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html. (standards.iteh.ai)

This document was prepared by Technical Committee ISO/TC 126, *Tobacco and tobacco products*.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/inembers.html.

Introduction

The CORESTA 1) Smoke Analytes Sub-Group selected one method using reversed phase high performance liquid chromatography with fluorescence detection (HPLC-FLD) for the determination of selected phenolic compounds in cigarette mainstream smoke. Smoke was collected on a glass fibre filter pad and extracted with a 1% acetic acid solution.

A CORESTA recommended method (CRM) was written^[1] on the basis of the results obtained in a collaborative study conducted in 2013 involving 18 laboratories using cigarettes manufactured from a range of blend styles.

This document is based upon the CRM 78 and includes statistical evaluations carried out according to ISO $5725-1^{[2]}$ and ISO $5725-2^{[3]}$.

No machine smoking regime can represent all human smoking behaviour.

- It is recommended that cigarettes also be tested under conditions of a different intensity of machine smoking than those specified in this document.
- Machine smoking testing is useful to characterize cigarette emissions for design and regulatory purposes, but communication of machine measurements to smokers can result in misunderstandings about exposure and risk across brands.
- Smoke emission data from machine measurements may be used as inputs for product hazard assessment, but they are not intended to be nor are they valid as measures of human exposure or risks. Communicating differences between products in machine measurements as differences in exposure or risk is a misuse of testing using ISO standards

ISO 23905:2020 https://standards.iteh.ai/catalog/standards/sist/d0ca831f-2519-4486-b049-69eccf55d320/iso-23905-2020

¹⁾ Available at: <u>www.coresta.org</u>.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 23905;2020 https://standards.iteh.ai/catalog/standards/sist/d0ca831f-2519-4486-b049-69eccf55d320/iso-23905-2020

Cigarettes — Determination of selected phenolic compounds in cigarette mainstream smoke using HPLC-FLD

WARNING — The use of this document involves hazardous materials, operations and equipment. This document does not purport to address all the safety problems associated with its use. It is the responsibility of the user of this document to establish appropriate safety and health practices and determine the applicability of any other restrictions prior to use.

1 Scope

This document specifies a method for the quantification of selected phenolic compounds by high performance liquid chromatography with fluorescence detection (HPLC-FLD) using ISO 3308 smoking parameters. The selected phenolic compounds are: hydroquinone, resorcinol, catechol, phenol, p-Cresol, m-Cresol and o-Cresol.

This method is applicable to cigarettes with total particulate matter (TPM) yields between 1 mg/cigarette and 16 mg/cigarette.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 3308, Routine analytical cigarette-smoking-machine — Definitions and standard conditions https://standards.iteh.ai/catalog/standards/sist/d0ca831f-2519-4486-b049-

ISO 3402, Tobacco and tobacco products 5 Atmosphere for conditioning and testing

ISO 4387, Cigarettes — Determination of total and nicotine-free dry particulate matter using a routine analytical smoking machine

ISO 8243, Cigarettes — Sampling

3 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at http://www.electropedia.org/

4 Principle

Selected phenolic compounds are collected by passing the mainstream smoke of cigarettes through a glass fibre filter pad as specified in ISO 3308 (e.g. Cambridge filer pad, CFP).

The CFP is extracted by a 1 % acetic acid solution. The obtained filtered solution is diluted and analysed by HPLC-FLD.

5 Apparatus

The usual laboratory apparatus for use in preparation of samples, solutions and standards and, in particular, the following.

- **5.1 Routine analytical cigarette-smoking machine**, complying with the requirements of ISO 3308.
- **5.2 High performance liquid chromatography system,** consisting of a binary gradient pump, an auto sampler with sampling loop and cooling unit, a fluorescence detector, a data collection system.
- **5.3 HPLC column,** with pentafluorphenylpropyl (PFP) stationary phase (e.g. 3 μ m, 150 mm × 4,6 mm or equivalent).
- **5.4 Disposable guard column,** such as PFP cartridge (e.g. 4 mm × 3,00 mm or equivalent).
- **5.5 Wrist action shaker**, or equivalent.
- **5.6 Analytical balance**, suitable for measuring to the nearest 0,1 mg.
- **5.7 Glassware,** actinic red Erlenmeyer flasks of appropriate volumes with ground glass stoppers, actinic red volumetric flasks (10 ml, 25 ml and 50 ml).
- 5.8 Mechanical pipettes with disposable plastic tips RD PREVIEW (standards.iteh.ai)

6 Reagents

All reagents shall be at least of analytical reagent grade grade standards/sist/d0ca831f-2519-4486-b049-69eccf55d320/iso-23905-2020

- **6.1 Methanol,** HPLC grade.
- **6.2 Acetic acid,** HPLC grade.
- **6.3** Hydroquinone, > 99 %.
- **6.4 Resorcinol**, > 99 %.
- **6.5** Catechol, > 99 %.
- **6.6 Phenol,** > 99 %.
- **6.7 p-Cresol,** > 99 %.
- **6.8** m-Cresol, > 99 %.
- **6.9 o-Cresol,** > 99 %.
- **6.10 Helium, (UHP),** if necessary for sparging of HPLC mobile phase or equivalent degassing system.
- **6.11 Deionised water**, with a resistivity > 18 M Ω ·cm at 25 °C.

7 Preparation

7.1 General

Glassware equipment shall be cleaned and dried in such a manner which ensures that contamination does not occur.

7.2 Preparation of solutions — Acetic acid, with a volume fraction of 1 % solution

Add approximately 3 500 ml of deionized water to a 4 l volumetric flask. Add 40 ml of acetic acid to the flask. Mix and dilute to the volume with deionized water.

7.3 Preparation of standards

7.3.1 Primary phenolic compounds stock solutions

Weigh approximately 25 mg of each of the phenolic compounds as described in the <u>Table 1</u> into individual 25 ml or 50 ml volumetric flasks and dissolve in 1 % acetic acid solution (see <u>7.2</u>).

Compound Weight (mg) Purity (%) Final volume Concentration (mg/ml) (ml) 25,0 99,9 P 25 Hydroquinone 1,000 Resorcinol 50 0,500 25,0 99.9 25,0 Catechol 25 1,000 25 1,000 Phenol 25,0 99,9 p-Cresol //standard2.5c9.ai/catalog/ standards/99/40ca831f-519-4486**59**049-0,496 25,0 69eccf55 d320/iso-2**99(5**5-2020 50 0,498 m-Cresol o-Cresol 25,0 99,9 50 0,500

Table 1 — Preparation of primary phenolic compounds stock solutions

The tables for stock and standards given in the <u>Tables 1</u> to <u>3</u> are given as examples. Each laboratory may prepare stock and calibration standards at different concentrations based on their samples. The primary phenolic compounds stock solutions are stored in the refrigerator and are to be prepared fresh every two weeks. Each laboratory may perform stability studies to determine the shelf life of the solutions.

7.3.2 Secondary phenolic compounds stock solutions

Pipette predetermined volumes, according to $\underline{\text{Table 2}}$, of each primary phenolic compounds stock solution (see $\underline{7.3.1}$) into a 50 ml volumetric flask and dilute to volume with 1 % acetic acid solution (see $\underline{7.2}$).

Volume of primary standard (ml) Compound Concentration (µg/ml) Hydroquinone 0,500 10,00 Resorcinol 0,300 3,00 Catechol 0,500 10,00 Phenol 0,500 10,00 p-Cresol 0,200 1,98 m-Cresol 0,200 1,99 o-Cresol 0,200 2,00

Table 2 — Preparation of secondary phenolic compounds stock solutions

The solutions are stable for about 5 days if stored in a refrigerator. Each laboratory may perform stability studies to determine the shelf life of the solutions.

7.3.3 Phenolic compounds working standards

Pipette appropriate volumes of each of the secondary phenolic compounds stock solutions (see <u>7.3.2</u>) according to <u>Table 3</u> into a 10 ml volumetric flask. Dilute to volume with 1 % acetic acid solution (see <u>7.2</u>).

Table 3 — Preparation of phenolic compounds working standards

Standard level	1	2	3	4	5	6
Volume of secondary standard (ml)	0,2	1,0	2,0	4,0	6,0	8,0
Hydroquinone (μg/ml)	0,200	1,000	2,000	4,000	5,99	7,99
Resorcinol (µg/ml)	0,060	0,300	0,599	1,200	1,80	2,40
Catechol (µg/ml)	0,200	1,000	2,000	4,000	5,99	7,99
Phenol (µg/ml)	0,200	1,000	2,000	4,000	5,99	7,99
p-Cresol (μg/ml)	0,040	0,199	0,398	0,796	1,19	1,59
m-Cresol (μg/ml)	0,040	0.198	0,396	0,793	1,19	1,59
o-Cresol (μg/ml)	0,040	0,200	0,400	0,799	1,20	1,60

The solutions are stable for about 5 days if stored in a refrigerator. Each laboratory may perform stability studies to determine the shelf life of the solutions.

iTeh STANDARD PREVIEW

8 Sampling

(standards.iteh.ai)

Carry out sampling in accordance with ISO 8243.

ISO 23905:2020

https://standards.iteh.ai/catalog/standards/sist/d0ca831f-2519-4486-b049-

9 Tobacco product preparation 69eccf55d320/iso-23905-2020

Condition the cigarettes in accordance with ISO 3402.

10 Sample generation — Smoking of cigarettes

10.1 General

The smoking parameters for which the method has been studied are defined in ISO 3308.

10.2 Smoking machine setup

An analytical cigarette-smoking machine according to ISO 3308 is required.

Check and adjust the puff volume drawn by the smoking machine at all channels, in accordance with ISO 4387.

To determine whether a leak has occurred in the analytical smoking machine setup, use a leak tester. If the fluid column does not maintain its position but drops, there is a leak in the system.

10.3 Smoking

The cigarettes are smoked according to ISO 3308.

11 Sample analysis

11.1 Preparation of sample

After all samples have been smoked following ISO 3308, remove the glass fibre filter pad from the smoking machine, fold into quarters and place into a 125 ml extraction flask for 44 mm glass fibre filter pad (or in a 250 ml extraction flask for 92 mm glass fibre filter pad). Add 40 ml of 1 % acetic acid solution (7.2) for 44 mm glass fibre filter pad (80 ml for 92 mm glass fibre filter pad). Cover the flask with ground glass stopper, shake the flask until the glass fibre filter pad has disintegrated and filter the extract through a $0.45~\mu m$ syringe filter.

NOTE There might be a need to dilute (with 1 % acetic solution) the obtained solution so that the concentration of phenolic compounds is within the calibration range.

Transfer an aliquot of the filtered extract to a vial and fill the vial to minimize the headspace.

11.2 Determination

11.2.1 HPLC-FLD operating conditions

Set up and operate the HPLC-FLD in accordance with the manufacturer's instruction.

The following parameters have been found to be suitable for operation.

Chromatographic parameters: STANDARD PREVIEW

Column temperature: (ambient lards.iteh.ai)

Auto sampler temperature: $4 \, ^{\circ}\text{C} \, (\pm 2 \, ^{\circ}\text{C})_{180} \, (\pm 2 \, ^{\circ}\text{C})_{23905;2020}$

Injection volumetos://standards.ite/poi/patalo20tandards/sist/d0ca831f-2519-4486-b049-

Mobile phase

Solvent A: 1 % acetic acid in deionized water

Solvent B: 1 % acetic acid in methanol

Flow: 0,8 ml/minute
Gradient (see <u>Table 4</u>)

Table 4 — Example of gradient

Time (min)	% A	% B
0	78	22
8	78	22
8,5	55	45
21	55	45
22	0	100
28	0	100

Wavelength programmable fluorescence detector settings (see <u>Table 5</u>).