

Designation: E720-08 Designation: E720 - 11

Standard Guide for Selection and Use of Neutron Sensors for Determining Neutron Spectra Employed in Radiation-Hardness Testing of Electronics¹

This standard is issued under the fixed designation E720; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1. Scope

1.1 This guide covers the selection and use of neutron-activation detector materials to be employed in neutron spectra adjustment techniques used for radiation-hardness testing of electronic semiconductor devices. Sensors are described that have been used at many radiation hardness-testing facilities, and comments are offered in table footnotes concerning the appropriateness of each reaction as judged by its cross-section accuracy, ease of use as a sensor, and by past successful application. This guide also discusses the fluence-uniformity, neutron self-shielding, and fluence-depression corrections that need to be considered in choosing the sensor thickness, the sensor covers, and the sensor locations. These considerations are relevant for the determination of neutron spectra from assemblies such as TRIGA- and Godiva-type reactors and from Californium irradiators. This guide may also be applicable to other broad energy distribution sources up to 20 MeV.

Note 1—For definitions on terminology used in this guide, see Terminology E170.

- 1.2 This guide also covers the measurement of the gamma-ray or beta-ray emission rates from the activation foils and other sensors as well as the calculation of the absolute specific activities of these foils. The principal measurement technique is high-resolution gamma-ray spectrometry. The activities are used in the determination of the energy-fluence spectrum of the neutron source. See Guide E721.
 - 1.3 Details of measurement and analysis are covered as follows:
- 1.3.1 Corrections involved in measuring the sensor activities include those for finite sensor size and thickness in the calibration of the gamma-ray detector, for pulse-height analyzer deadtime and pulse-pileup losses, and for background radioactivity.
- 1.3.2 The primary method for detector calibration that uses secondary standard gamma-ray emitting sources is considered in this guide and in General Methods E181. In addition, an alternative method in which the sensors are activated in the known spectrum of a benchmark neutron field is discussed in Guide E1018.
- 1.3.3 A data analysis method is presented which accounts for the following: detector efficiency; background subtraction; irradiation, waiting, and counting times; fission yields and gamma-ray branching ratios; and self-absorption of gamma rays and neutrons in the sensors.
 - 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
- 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

- 2.1 General considerations of neutron-activation detectors discussed in Practice E261, Test Method E262, and Guides E721 and E844 are applicable to this guide. Background information for applying this guide are given in these and other relevant standards as follows:
 - 2.2 ASTM Standards:²
 - E170 Terminology Relating to Radiation Measurements and Dosimetry
 - E181 Test Methods for Detector Calibration and Analysis of Radionuclides

¹ This guide is under the jurisdiction of ASTM Committee E10 on Nuclear Technology and Applications and is the direct responsibility of Subcommittee E10.07 on Radiation Dosimetry for Radiation Effects on Materials and Devices.

Current edition approved July 1, 2008. Published July 2008. Originally approved in 1980. Last previous edition approved in 2004 as E720–04^{£1}. DOI: 10.1520/E0720-08. Current edition approved June 1, 2011. Published July 2011. Originally approved in 1980. Last previous edition approved in 2008 as E720 – 08. DOI: 10.1520/E0720-11.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

- E261 Practice for Determining Neutron Fluence, Fluence Rate, and Spectra by Radioactivation Techniques
- E262 Test Method for Determining Thermal Neutron Reaction Rates and Thermal Neutron Fluence Rates by Radioactivation Techniques
- E263 Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Iron
- E264 Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Nickel
- E265 Test Method for Measuring Reaction Rates and Fast-Neutron Fluences by Radioactivation of Sulfur-32
- E266 Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Aluminum
- E393 Test Method for Measuring Reaction Rates by Analysis of Barium-140 From Fission Dosimeters
- E496 Test Method for Measuring Neutron Fluence and Average Energy from³H(d,n) ⁴He Neutron Generators by Radioactivation Techniques
- E704 Test Method for Measuring Reaction Rates by Radioactivation of Uranium-238
- E705 Test Method for Measuring Reaction Rates by Radioactivation of Neptunium-237
- E721 Guide for Determining Neutron Energy Spectra from Neutron Sensors for Radiation-Hardness Testing of Electronics
- E844 Guide for Sensor Set Design and Irradiation for Reactor Surveillance, E 706 (IIC)
- E944 Guide for Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance, E 706 (IIA)
- E1018 Guide for Application of ASTM Evaluated Cross Section Data File, Matrix E706 (IIB)
- E1297 Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Niobium

3. Significance and Use

- 3.1 Because of the wide variety of materials being used in neutron-activation measurements, this guide is presented with the objective of bringing improved uniformity to the specific field of interest here: hardness testing of electronics primarily in critical assembly reactor environments.
- Note 2—Some of the techniques discussed are useful for 14-MeV dosimetry. See Test Method E496 for activation detector materials suitable for 14-MeV neutron effects testing.
- Note 3—The materials recommended in this guide are suitable for 252Cf or other weak source effects testing provided the fluence is sufficient to generate countable activities.
- 3.2 This guide is organized into two overlapping subjects; the criteria used for sensor selection, and the procedures used to ensure the proper determination of activities for determination of neutron spectra. See Terminology E170 and General Methods E181. Determination of neutron spectra with activation sensor data is discussed in Guides E721 and E944.

4. Foil Sets

4.1 Reactions Considered:

- 4.1.1 Neutron-induced reactions appropriate for this guide are listed in Table 1. The table includes most of the reactions used in this field. Those not marked with an asterisk are recommended because of their demonstrated compatibility with other reactions used in spectrum adjustment determinations. This compatibility is primarily based on experience with the ENDF/B-VI (1, 2), and IRDF-90 (3) cross-sections. These recommendations may change modestly as revisions are made in the ENDF/B and IRDF dosimetry cross sections. Other reactions may be useful in particular circumstances with appropriate care. It is important that the user take full account of both the footnotes attached to each reaction and the discussions in the body of the text about individual reactions when implementing the foil-activation technique.
- 4.1.2 The four paired columns under the labels fast burst (4) and "TRIGA (5) Type" list the energy ranges within which 95 % of the response occurs for these two representative spectra. These limits are just a guide because the response often varies widely within each range. The response limits for an idealized fission spectrum with no 1/E tail can be much different (shifted toward higher energy) for resonance reactions. For example, in a Watt fission spectrum the 197 Au(n,γ) 198 Au has a 95 % response between 5.0×10^{-2} and 2.7 MeV. The recommended foil mass column gives values that are designed to minimize self-absorption, self-shielding, and other corrections, provided the foils are 1.27 cm in diameter. The $E_t \cong 0$ fission foils, 235 U and 239 Pu, have similar cross-section shapes. However, the 235 U foil is preferred since it is less expensive and is much less of a health hazard than 239 Pu. In addition, when measuring soft (TRIGA) spectra, the 235 U foil is useful in determining the correction for the 235 U impurity in the 238 U foil (which is readily available with about 400 ppm or less 235 U impurity).
- 4.1.3 Although sulfur is listed and is used widely as a monitor foil, it is the only recommended sensor requiring beta particle detection and, therefore, requires a different calibration and counting technique. The 58 Ni(n,p) 58 Co reaction has about the same threshold energy and, therefore, can be used instead of the 32 S(n,p) 32 P if it acquires sufficient activity. Many facilities use sulfur as a routine monitor because its two-week half-life allows a convenient period for counting and permits reuse of the sensor after 6 to 9 months. Automated beta counters are commercially available. Neither nickel nor sulfur should be counted for the (n,p) reaction products immediately after irradiation because for nickel the 58 Co must build up through a metastable state, and for sulfur there are competing reactions. According to Test Method E264 the waiting period for 58 Co should be 4 days. For 32 P, Test Method E265 recommends waiting 24 h. Corrections can be made for shorter waiting periods.
- 4.1.4 In selecting dosimetry reactions one should consider the validation of the cross sections and associated uncertainty as demonstrated in the ²³⁵U thermal fission and the ²⁵²Cf spontaneous fission benchmark neutron fields. Ref (6) provides a recent comparison of the measured and calculated spectrum-averaged cross sections for these benchmark fields.

TABLE 1 Activation Foils

				TABLE 1	Activation Fo	oils				
	Fast Burst ^A		TRIGA Type ^A			Gamma/React		- 2	Recommended	Footnotes
Reaction	E _I , MeV	E _H , MeV	E _I , MeV	E _H , MeV	E _γ <u>B</u> , (keV)	<u>Emissi</u> on Probability ^B (Yield, % ^C) <u>%</u>	$T_{1/2}^{B}$	Foil Mass, g ^D	i oomotes
¹⁹⁷ Au(<i>n</i> ,γ) ¹⁹⁸ Au	4.00 – 6	7.20 – 4	3.80 – 6	9.20 – 6	-411.8	0.956		2.694 days	0.06	E,F,G
197 Au $(n,\gamma)^{198}$ Au	4.00 – 6	7.20 – 4	3.80 – 6	9.20 – 6	411.8025	95.54		2.6944 days		E,F,G
⁹ Co(<i>n</i> ,γ) ⁶⁰ Co	7.60 – 6	$\frac{4.50 - 4}{4.50}$	$\frac{1}{6.90 - 7}$	1.43 – 4	1173.2	0.9998		5.271 years	0.06	E,G
${}^{9}\text{Co}(n,\gamma){}^{60}\text{Co}$	7.60 - 6	4.50 – 4	6.90 - 7	1.43 – 4	1173.2	99.85		5.2711 years	0.06	E,G
					1332.5	0.9998				
50- / \50-					1332.5	99.98				E,H
⁵⁸ Fe(<i>n</i> ,γ) ⁵⁹ Fe ⁵⁸ Fe(<i>n</i> ,γ) ⁵⁹ Fe	1.00 - 6	2.10 + 0	5.25 – 7	1.00 - 2	1099.2	0.565		44.5 days	0.15	Е,П Е,Н
$re(n,\gamma)$	<u>1.00 – 6</u>	<u>2.10 + 0</u>	<u>5.25 – 7</u>	<u>1.00 – 2</u>	1099.245 1291.6	56.59 0.432		44.495 days	<u>0.15</u>	
					1291.59	43.21				
⁵ Mn(<i>n</i> ,γ) ⁵⁶ Mn	5.25 - 7	6.60 – 1	4.75 – 7	1.10 - 3	846.8	0.989		2.58 h	0.05	E,F
5 Mn $(n,\gamma)^{56}$ Mn	5.25 – 7	6.60 - 1	4.75 - 7	1.10 – 3	846.76	98.85		2.57878 h	0.05	E,F
					1810.7	0.272				
630 ()640					1810.726	26.9				E
⁶³ Cu(<i>n</i> ,γ) ⁶⁴ Cu	1.15 - 6	2.30 + 0	5.25 - 7	9.60 - 3	1345.9	0.0049		12.7 h	0.15	E
⁶³ Cu(<i>n</i> ,γ) ⁶⁴ Cu ³ Na(<i>n</i> ,γ) ²⁴ Na	$\frac{1.15 - 6}{6.30 - 7}$	$\frac{2.30+0}{2.00+0}$	$\frac{5.25-7}{5.25-7}$	$\frac{9.60-3}{3.00-3}$	1345.77 1368.6	0.4743 1.00		12.700 h 14.96 h	0.13	E,I,J
'Na(π,γ) - Na ³ Na(<i>n</i> ,γ) ²⁴ Na	6.30 <i>- 7</i>	2.00 + 0 $2.00 + 0$	5.25 – 7 5.25 – 7	3.00 – 3	1368.626	99.993		14.9574 h	0.10	E,I,J
144(11, 7)	0.00 7	2.00 1 0	<u>5.25 7</u>	0.00 0	2754.1	99.872		14.557 4 11	0.10	
⁵ Sc(<i>n</i> ,γ) ⁴⁶ Sc	4.25 - 7	1.00 + 0	4.00 - 7	4.75 – 4	-889.3	1.00		83.81 days	0.05	E
5 Sc $(n,\gamma)^{46}$ Sc	4.25 – 7	1.00 + 0	4.00 - 7	4.75 – 4	889.27	99.983		83.788 days	0.05	E
					1120.537	99.986				_
³⁵ U(<i>n,t</i>) ¹⁴⁰ La	9.20 - 2	4.70 + 0	6.30 – 4	3.80 + 0	1596.2	0.954 (6.105)		40.27 h	0.50	E,K,L
³⁵ U(<i>n,f</i>) ¹⁴⁰ La	9.20 - 2	$\frac{4.70+0}{1.70}$	$\frac{6.30-4}{1}$	$\frac{3.80+0}{2.00}$	1596.2	95.4	6.105	40.28 h	0.00	E,K,L E,L
³⁵ U(<i>n,t</i>) ⁹⁵ Zr	9 .20 - 2	4.70 + 0	6.30 - 4	3.80 + 0	-724.2	0.441 (6.363)	0.000	64.02 days	0.00	E,L
³⁵ U(<i>n,f</i>) ⁹⁵ Zr	<u>9.20 – 2</u>	4.70 + 0	<u>6.30 – 4</u>	3.80 + 0	724.2 756.7	44.27 54.4	6.363	64.03 days	0.60	
³⁹ Pu(<i>n,f</i>) ¹⁴⁰ La	1.43 – 1	4.80 + 0	8.80 – 4	4.30 + 0	1596.2	0.954 (5.326)		40.27 h	1.00	E,K,L
³⁹ Pu(<i>n,f</i>) ¹⁴⁰ La	1.43 – 1	4.80 + 0	8.80 – 4	4.30 + 0	1596.2	95.4	5.326	40.28 h		E,K,L
²³⁹ Pu(<i>n,f</i>) ⁹⁵ Zr	1.43 – 1	$\frac{4.80 + 0}{4.80 + 0}$	8.80 - 4	$\frac{4.30 + 0}{4.30 + 0}$	724.2	0.441 (4.685)		64.02 days	0.60	E,L
²³⁹ Pu(<i>n,f</i>) ⁹⁵ Zr	<u>1.43 – 1</u>	4.80 + 0	8.80 - 4	4.30 + 0	724.2	44.1	4.685	64.02 days	0.60	E,L
					756.7	54.4				
¹³ Nb(<i>n,n</i> ′) ^{93m} Nb	8.40 – 1	5.70 + 0	1.00 + 0	5.50 + 0	16.6	0.115		16.13 years		₩ M
13 Nb $(n,n')^{93m}$ Nb 03 Rh $(n,n')^{103m}$ Rh	<u>8.40 – 1</u>	$\frac{5.70+0}{5.70+0}$	1.00 + 0	$\frac{5.50+0}{5.70}$	16.5-19.6	11.0		16.12 years		\overline{M}
³⁷ Np(<i>n,f</i>) ¹⁴⁰ La	5.50 – 1 5.75 – 1	5.70 + 0 5.60 + 0	6.90 – 1 6.60 – 1	5.70 + 0 5.50 + 0	39.8 1596.2	0.068 0.954 (5.489)		56.1 min 40.27 h		E,K,L,N
³⁷ Np(<i>n,f</i>) ¹⁴⁰ La	5.75 – 1 5.75 – 1	5.60 + 0	6.60 – 1	5.50 + 0	1596.2	95.4	5.489	40.28 h	0.00	E,K,L,N
³⁷ Np(<i>n,t</i>) ⁹⁵ Zr	5.75 - 1	5.60 + 0	6.60 - 1	5.50 + 0	724.2	0.441 (5.699)	<u>5.465</u>	64.02 days	0.60	E,L
²³⁷ Np(<i>n,f</i>) ⁹⁵ Zr	5.75 – 1	5.60 + 0	6.60 - 1	5.50 + 0	724.2	44.1	5.699	64.02 days		E,L
				ASTN	756.7	54.4				_
¹¹⁵ ln(<i>n,n'</i>) ^{115m} ln	1.00 + 0	6.00 + 0	1.20 + 0	5.80 + 0	336.2	0.459		4.49 h	0.12	
¹¹⁵ ln(<i>n,n</i> ′) ^{115m} ln ³⁸ U(<i>n,t</i>) ¹⁴⁰ La	1.00 + 0	6.00 + 0	$\frac{1.20 + 0}{1.50 + 0}$	$\frac{5.80+0}{0.00+0}$	336.2	-45.9 8 - 85 01		4.49 h		E,K,L,O
³⁸ U(<i>n,f</i>) ¹⁴⁰ La	1.50 + 0 1.50 + 0	6.90 + 0 6.90 + 0	1.50 + 0 1.50 + 0	6.60 + 0 6.60 + 0	1596.2 1596.2	0.954 (5.948) 95.4	5.948	40.27 h 40.28 h	1.00	E,K,L,O
38 U(<i>n,t</i>)95 Zr	1.50 + 0 1.50 + 0	6.90 + 0	1.50 + 0 1.50 + 0	$\frac{6.60 + 0}{6.60 + 0}$	724.2	0.441 (5.105)	3.940	64.02 days	1.00	E,L
³⁸ U(<i>n</i> , <i>f</i>) ⁹⁵ Zr	1.50 + 0	6.90 + 0	1.50 + 0	6.60 + 0	724.2	44.1	5.105	64.02 days		E,L
					756.7	54.4				_
³² Th(<i>n,f</i>) ¹⁴⁰ Ba	1.50 + 0	7.40 + 0	1.50 + 0	7.10 + 0	537.3	0.244 (7.704)		12.75 days	1.00	E,K,P
²³² Th(<i>n,f</i>) ¹⁴⁰ Ba	1.50 + 0	7.40 + 0	1.50 + 0	7.10 + 0	537.3	24.4	7.704	12.753 days	1.00	E,K,P
³² Th(<i>n,f</i>) ⁹⁵ Zr ³² Th(<i>n,f</i>) ⁹⁵ Zr	1.50 + 0	7.40 + 0	1.50 + 0	7.10 + 0	-724.2	0.441 (5.374)		64.02 days	1.00	E,L E,L
³² Ih(n t) ³³ /r							- 0- 4			
111(11,1) 21	<u>1.50 + 0</u>	7.40 + 0	<u>1.50 + 0</u>	7.10 + 0	724.2	44.1	5.374	64.02 days	1.00	<u></u>
	<u>1.50 + 0</u>				756.7	54.4	5.374		1.00	_
⁵⁴ Fe(<i>n,p</i>) ⁵⁴ Mn	$\frac{1.50 + 0}{2.30 + 0}$	7.70 + 0	2.30 + 0	7.40 + 0	756.7 -834.8	54.4 1.00	5.374	312.1 days	0.15	<u>E,L</u> <u>—</u> E
⁵⁴ Fe(<i>n,p</i>) ⁵⁴ Mn ⁵⁴ Fe(<i>n,p</i>) ⁵⁴ Mn	$\frac{1.50 + 0}{2.30 + 0}$ $\frac{2.30 + 0}{2.30 + 0}$	7.70 + 0 7.70 + 0	2.30 + 0 2.30 + 0	7.40 + 0 7.40 + 0	756.7 -834.8 834.838	54.4 1.00 99.9746	5.374	312.1 days 312.13 days	0.15 0.15	— €
⁵⁴ Fe(<i>n,p</i>) ⁵⁴ Mn ⁵⁴ Fe(<i>n,p</i>) ⁵⁴ Mn ⁵⁸ Ni(<i>n,p</i>) ⁵⁸ Co	$\frac{1.50 + 0}{2.30 + 0}$	7.70 + 0	2.30 + 0	7.40 + 0	756.7 -834.8	54.4 1.00	5.374	312.1 days	0.15 0.15 0.30 0.30	 E E E
⁵⁴ Fe(<i>n</i> , <i>p</i>) ⁵⁴ Mn ⁵⁴ Fe(<i>n</i> , <i>p</i>) ⁵⁴ Mn ⁵⁸ Ni(<i>n</i> , <i>p</i>) ⁵⁸ Co ⁵⁸ Ni(<i>n</i> , <i>p</i>) ⁵⁸ Co ⁴⁷ Ti(<i>n</i> , <i>p</i>) ⁴⁷ Sc	$ \begin{array}{r} 1.50 + 0 \\ 2.30 + 0 \\ 2.30 + 0 \\ 2.00 + 0 \end{array} $	$\frac{7.70 + 0}{7.70 + 0}$ $\frac{7.60 + 0}{7.60 + 0}$	$\frac{2.30 + 0}{2.30 + 0}$ $\frac{2.30 + 0}{2.00 + 0}$	$\frac{7.40 + 0}{7.40 + 0}$ $\frac{7.30 + 0}{7.30 + 0}$	756.7 -834.8 834.838 -810.8	54.4 1.00 99.9746 0.995	5.374	312.1 days 312.13 days 70.8 days	0.15 0.15 0.30 0.30 0.15	— E E E E E,Q,R
⁴ Fe(n,p) ⁵⁴ Mn ⁴ Fe(n,p) ⁵⁴ Mn ⁸ Ni(n,p) ⁵⁸ Co ⁸ Ni(n,p) ⁵⁸ Co ⁷ Ti(n,p) ⁴⁷ Sc ⁷ Ti(n,p) ⁴⁷ Sc	$ \begin{array}{r} \underline{1.50 + 0} \\ \underline{2.30 + 0} \\ \underline{2.30 + 0} \\ \underline{2.00 + 0} \\ \underline{2.00 + 0} \\ \underline{1.90 + 0} \\ \underline{1.90 + 0} \\ \underline{1.90 + 0} \\ \end{array} $	7.70 + 0 7.70 + 0 7.60 + 0 7.60 + 0 7.60 + 0 7.60 + 0 7.60 + 0	2.30 + 0 2.30 + 0 2.00 + 0 2.00 + 0 1.90 + 0	7.40 + 0 7.40 + 0 7.30 + 0 7.30 + 0 7.30 + 0 7.30 + 0	756.7 -834.8 834.838 -810.8 810.7 -159.4	54.4 1.00 99.9746 0.995 99.45 0.683 68.3	5.374	312.1 days 312.13 days 70.8 days 70.83 days 3.35 days 3.35 days	0.15 0.15 0.30 0.30 0.15	E E E E E,Q,R E,Q,R
5 ⁴ Fe(n,p) ⁵⁴ Mn 5 ⁴ Fe(n,p) ⁵⁴ Mn 5 ⁸ Ni(n,p) ⁵⁸ Co 5 ⁸ Ni(n,p) ⁵⁸ Co 1 ⁷ Ti(n,p) ⁴⁷ Sc 1 ² S(n,p) ⁴⁷ Sc	$ \begin{array}{r} 1.50 + 0 \\ 2.30 + 0 \\ 2.30 + 0 \\ 2.00 + 0 \\ 2.00 + 0 \\ 1.90 + 0 \\ \hline 1.90 + 0 \\ \hline 2.40 + 0 \end{array} $	7.70 + 0 7.70 + 0 7.60 + 0 7.60 + 0 7.60 + 0 7.60 + 0 7.50 + 0	2.30 + 0 2.30 + 0 2.00 + 0 2.00 + 0 1.90 + 0 1.90 + 0 2.30 + 0	7.40 + 0 $7.40 + 0$ $7.30 + 0$ $7.30 + 0$ $7.30 + 0$ $7.30 + 0$ $7.30 + 0$ $7.30 + 0$	756.7 -834.8 834.838 -810.8 810.7 -159.4 159.4 1710.(beta)	54.4 1.00 99.9746 0.995 99.45 0.683 68.3 1.00 (beta)	5.374	312.1 days 312.13 days 70.8 days 70.83 days 3.35 days 14.28 days	0.15 0.30 0.30 0.15 0.15	E E E E E,Q,R E,Q,R G
5 ⁴ Fe(<i>n,p</i>) ⁵⁴ Mn 5 ⁴ Fe(<i>n,p</i>) ⁵⁴ Mn 5 ⁸ Ni(<i>n,p</i>) ⁵⁸ Ce 5 ⁸ Ni(<i>n,p</i>) ⁵⁸ Co 1 ⁴ Ti(<i>n,p</i>) ⁴⁷ Se 1 ⁴ Ti(<i>n,p</i>) ⁴⁷ Sc 1 ² S(<i>n,p</i>) ³² P 1 ³ S(<i>n,p</i>) ³² P	$ \begin{array}{r} 1.50 + 0 \\ 2.30 + 0 \\ 2.30 + 0 \\ 2.00 + 0 \\ 2.00 + 0 \\ 1.90 + 0 \\ 2.40 + 0 \\ 2.40 + 0 \end{array} $	7.70 + 0 7.70 + 0 7.60 + 0 7.60 + 0 7.60 + 0 7.60 + 0 7.50 + 0 7.50 + 0	2.30 + 0 2.30 + 0 2.00 + 0 2.00 + 0 1.90 + 0 2.30 + 0 2.30 + 0	7.40 + 0 $7.40 + 0$ $7.30 + 0$ $7.30 + 0$ $7.30 + 0$ $7.30 + 0$ $7.30 + 0$ $7.30 + 0$ $7.30 + 0$	756.7 834.8 834.838 810.7 159.4 1710.(beta) 1710.6	54.4 1.00 99.9746 0.995 99.45 0.683 68.3 1.00 (beta)	5.374	312.1 days 312.13 days 70.8 days 70.83 days 3.35 days 14.28 days 14.28 days	0.15 0.15 0.30 0.30 0.15 0.15 	E E E E,Q,R E,Q,R S
⁴ Fe(n,p) ⁵⁴ Mn ⁴ Fe(n,p) ⁵⁴ Mn ⁸ Ni(n,p) ⁵⁸ Ce ⁸ Ni(n,p) ⁵⁸ Co ⁷ Ti(n,p) ⁴⁷ Sc ² S(n,p) ³² P ² S(n,p) ³² P ⁴ Zn(n,p) ⁶⁴ Cu	$ \begin{array}{r} 1.50 + 0 \\ 2.30 + 0 \\ 2.30 + 0 \\ 2.00 + 0 \\ 2.00 + 0 \\ 1.90 + 0 \\ 1.90 + 0 \\ 2.40 + 0 \\ 2.60 + 0 \end{array} $	7.70 + 0 7.70 + 0 7.60 + 0 7.60 + 0 7.60 + 0 7.60 + 0 7.50 + 0 7.50 + 0 7.70 + 0	2.30 + 0 2.30 + 0 2.00 + 0 1.90 + 0 1.90 + 0 2.30 + 0 2.30 + 0 2.60 + 0	7.40 + 0 7.40 + 0 7.30 + 0 7.30 + 0 7.30 + 0 7.30 + 0 7.30 + 0 7.40 + 0	756.7 834.8 834.838 810.7 159.4 1710.(beta) 1710.6 1345.9	54.4 1.00 99.9746 0.995 99.45 0.683 1.00 (beta) 100. (beta) 0.0049	5.374	312.1 days 312.13 days 70.8 days 70.83 days 3.35 days 14.28 days 14.284 days 12.7 h	0.15 0.15 0.30 0.30 0.15 0.15 0.35	E E E E E,Q,R E,Q,R G
5 ⁴ Fe(<i>n,p</i>) ⁵⁴ Mn 5 ⁴ Fe(<i>n,p</i>) ⁵⁴ Mn 5 ⁸ Ni(<i>n,p</i>) ⁵⁸ Ce 5 ⁸ Ni(<i>n,p</i>) ⁵⁸ Co 1 ⁴ Ti(<i>n,p</i>) ⁴⁷ Se 1 ⁴ Ti(<i>n,p</i>) ⁴⁷ Sc 1 ² S(<i>n,p</i>) ³² P 1 ² S(<i>n,p</i>) ³² P 1 ³ Zn(<i>n,p</i>) ⁶⁴ Cu 1 ³ Zn(<i>n,p</i>) ⁶⁴ Cu	$ \begin{array}{r} 1.50 + 0 \\ 2.30 + 0 \\ 2.30 + 0 \\ 2.00 + 0 \\ \hline 1.90 + 0 \\ 1.90 + 0 \\ 2.40 + 0 \\ 2.40 + 0 \\ 2.60 + 0 \\ 2.60 + 0 \\ \end{array} $	7.70 + 0 7.70 + 0 7.60 + 0 7.60 + 0 7.60 + 0 7.60 + 0 7.50 + 0 7.50 + 0 7.70 + 0	2.30 + 0 2.30 + 0 2.00 + 0 1.90 + 0 1.90 + 0 2.30 + 0 2.30 + 0 2.60 + 0	7.40 + 0 7.40 + 0 7.30 + 0 7.30 + 0 7.30 + 0 7.30 + 0 7.30 + 0 7.30 + 0 7.40 + 0	756.7 834.8 834.838 810.7 159.4 1710.(beta) 1710.6 1345.9 1345.7	54.4 1.00 99.9746 0.995 99.45 0.683 1.00 (beta) 100. (beta) 0.0049 0.4743	5.374	312.1 days 312.13 days 70.8 days 70.83 days 3.35 days 3.35 days 14.28 days 14.28 days 12.7 h 12.700 h	0.15 0.30 0.15 0.30 0.15 0.15 0.30 0.15 	E E E E,Q,R S S
54Ee(n,p)54Mn 54Ee(n,p)54Mn 54Ee(n,p)55Co 58Ni(n,p)58Co 17Ti(n,p)47Sc 17Ti(n,p)47Sc 12S(n,p)32P 12S(n,p)32P 134Zn(n,p)64Cu 144Zn(n,p)64Cu 157Xi(n,p)64Cu 157Xi(n,p)64Cu 157Xi(n,p)64Cu 157Xi(n,p)64Cu	$ \begin{array}{r} 1.50 + 0 \\ 2.30 + 0 \\ 2.30 + 0 \\ 2.00 + 0 \\ 2.00 + 0 \\ 1.90 + 0 \\ 1.90 + 0 \\ 2.40 + 0 \\ 2.60 + 0 \end{array} $	7.70 + 0 7.70 + 0 7.60 + 0 7.60 + 0 7.60 + 0 7.60 + 0 7.50 + 0 7.50 + 0 7.70 + 0	2.30 + 0 2.30 + 0 2.00 + 0 1.90 + 0 1.90 + 0 2.30 + 0 2.30 + 0 2.60 + 0	7.40 + 0 7.40 + 0 7.30 + 0 7.30 + 0 7.30 + 0 7.30 + 0 7.30 + 0 7.40 + 0	756.7 834.8 834.838 810.7 159.4 1710.(beta) 1710.6 1345.9	54.4 1.00 99.9746 0.995 99.45 0.683 1.00 (beta) 100. (beta) 0.0049	5.374	312.1 days 312.13 days 70.8 days 70.83 days 3.35 days 14.28 days 14.284 days 12.7 h	0.15 0.30 0.15 0.30 0.15 0.15 0.30 0.15 0.30	E E E E,O,R E,O,R 6 S E
54Fe(n,p)54Mn 54Fe(n,p)54Mn 54Fe(n,p)54Mn 58Ni(n,p)58Co 58Ni(n,p)58Co 47Ti(n,p)47Sc 47Ti(n,p)47Sc 32S(n,p)32P 54Zn(n,p)64Cu 54Ti(n,p)64Cu 54Ti(n,p)64Cu 54Ti(n,p)64Cu 54Ti(n,p)64Cu 54Ti(n,p)64Cu 54Ti(n,p)64Cu	$ \begin{array}{r} 1.50 + 0 \\ 2.30 + 0 \\ 2.30 + 0 \\ 2.00 + 0 \\ 2.00 + 0 \\ \hline 1.90 + 0 \\ 2.40 + 0 \\ 2.40 + 0 \\ 2.60 + 0 \\ \hline 3.50 + 0 \\ \end{array} $	7.70 + 0 7.70 + 0 7.60 + 0 7.60 + 0 7.60 + 0 7.60 + 0 7.50 + 0 7.70 + 0 7.70 + 0 9.40 + 0	2.30 + 0 2.30 + 0 2.00 + 0 2.00 + 0 1.90 + 0 1.90 + 0 2.30 + 0 2.30 + 0 2.60 + 0 3.40 + 0	7.40 + 0 7.40 + 0 7.30 + 0 7.30 + 0 7.30 + 0 7.30 + 0 7.30 + 0 7.40 + 0 7.40 + 0 9.20 + 0	756.7 834.8 834.838 810.8 810.7 159.4 1710.(beta) 1710.6 1345.9 1345.7 843.8	54.4 1.00 99.9746 0.995 99.45 0.683 68.3 1.00 (beta) 100. (beta) 0.0049 0.4743 0.718	5.374	312.1 days 312.13 days 70.8 days 70.83 days 3.35 days 3.35 days 14.28 days 14.284 days 12.7 h 12.700 h 9.46 min	0.15 0.30 0.30 0.15 0.15 0.15 0.30 0.30 0.30 0.30	= E E E E E E E E E E E E E E E E E E E
¹⁴ Fe(n,p) ⁵⁴ Mn ¹⁴ Fe(n,p) ⁵⁴ Mn ¹⁸ Ni(n,p) ⁵⁸ Co ¹⁸ Ni(n,p) ⁵⁸ Co ¹⁷ Ti(n,p) ⁴⁷ Sc ¹² S(n,p) ³² P ¹⁴ Zn(n,p) ⁶⁴ Cu ¹⁴ Zn(n,p) ⁶⁴ Cu ¹⁴ Zn(n,p) ⁶⁴ Cu ¹⁷ Xl(n,p) ²⁷ Mg ¹⁶ Ti(n,p) ⁴⁶ Se	$ \begin{array}{r} 1.50 + 0 \\ 2.30 + 0 \\ 2.30 + 0 \\ 2.00 + 0 \\ 2.00 + 0 \\ \hline 1.90 + 0 \\ 2.40 + 0 \\ 2.40 + 0 \\ 2.60 + 0 \\ \hline 3.50 + 0 \\ \end{array} $	7.70 + 0 7.70 + 0 7.60 + 0 7.60 + 0 7.60 + 0 7.60 + 0 7.50 + 0 7.70 + 0 7.70 + 0 9.40 + 0	2.30 + 0 2.30 + 0 2.00 + 0 2.00 + 0 1.90 + 0 1.90 + 0 2.30 + 0 2.30 + 0 2.60 + 0 3.40 + 0	7.40 + 0 7.40 + 0 7.30 + 0 7.30 + 0 7.30 + 0 7.30 + 0 7.30 + 0 7.40 + 0 7.40 + 0 9.20 + 0	756.7 834.8 834.838 810.8 810.7 -159.4 1710.(beta) 1710.6 1345.9 1345.7 -843.8 843.8	54.4 1.00 99.9746 0.995 99.45 0.683 68.3 1.00 (beta) 100. (beta) 0.04743 0.718 71.8	5.374	312.1 days 312.13 days 70.8 days 70.83 days 3.35 days 3.35 days 14.28 days 14.284 days 12.7 h 12.700 h 9.46 min	0.15 0.30 0.30 0.15 0.15 0.15 0.30 0.30 0.30 0.30	= E E E E E E E E E E E E E E E E E E E
⁴ Fe(n,p) ⁵⁴ Mn ⁴ Fe(n,p) ⁵⁴ Mn ⁸ Ni(n,p) ⁵⁸ Co ⁸ Ni(n,p) ⁵⁸ Co ⁷ Ti(n,p) ⁴⁷ Sc ² S(n,p) ³² P ⁴ Zn(n,p) ⁶⁴ Cu ⁴ Zn(n,p) ⁶⁴ Cu ⁴ Zn(n,p) ⁶⁴ Cu ⁷ Al(n,p) ²⁷ Mg ⁶ Ti(n,p) ⁴⁶ Sc	$ \begin{array}{r} 1.50 + 0 \\ 2.30 + 0 \\ 2.00 + 0 \\ 2.00 + 0 \\ 2.00 + 0 \\ 1.90 + 0 \\ 2.40 + 0 \\ 2.40 + 0 \\ 2.60 + 0 \\ 3.50 + 0 \\ \end{array} $	7.70 + 0 7.70 + 0 7.60 + 0 7.60 + 0 7.60 + 0 7.60 + 0 7.50 + 0 7.50 + 0 7.70 + 0 9.40 + 0	2.30 + 0 2.30 + 0 2.00 + 0 2.00 + 0 1.90 + 0 1.90 + 0 2.30 + 0 2.30 + 0 2.60 + 0 3.40 + 0 3.40 + 0	7.40 + 0 7.40 + 0 7.30 + 0 7.30 + 0 7.30 + 0 7.30 + 0 7.30 + 0 7.40 + 0 7.40 + 0 9.20 + 0	756.7 834.8 834.838 810.8 810.7 159.4 1710.(beta) 1710.6 1345.9 1345.7 843.8 1014.4 889.3 889.3	54.4 1.00 99.9746 0.995 99.45 0.683 1.00 (beta) 100. (beta) 0.0049 0.4743 0.718 71.8 28.0 1.00 99.983	5.374	312.1 days 312.13 days 70.8 days 70.83 days 3.35 days 3.35 days 14.28 days 14.28 days 12.700 h 9.46 min 9.46 min	0.15 0.30 0.30 0.15 0.15 0.15 0.30 0.30 0.30 0.30 0.30 0.30	= E E E E CO,R S E E E E E E E E E E E E E E E E E E
54Ee(n,p)54Mn 54Ee(n,p)54Mn 56E(n,p)54Mn 56SNi(n,p)58Co 58Ni(n,p)58Co 67Ti(n,p)47Sc 67Ti(n,p)47Sc 67Ti(n,p)32P 67Si(n,p)32P 67Si(n,p)32P 67Al(n,p)64Cu 67Al(n,p)64Cu 67Al(n,p)64Sc 66Ti(n,p)46Sc	$ \begin{array}{r} 1.50 + 0 \\ 2.30 + 0 \\ 2.30 + 0 \\ 2.00 + 0 \\ 2.00 + 0 \\ 1.90 + 0 \\ 2.40 + 0 \\ 2.60 + 0 \\ 2.60 + 0 \\ 3.50 + 0 \\ 3.80 + 0 \\ \end{array} $	7.70 + 0 7.70 + 0 7.60 + 0 7.60 + 0 7.60 + 0 7.60 + 0 7.50 + 0 7.50 + 0 7.70 + 0 9.40 + 0 9.60 + 0 9.60 + 0	2.30 + 0 2.30 + 0 2.00 + 0 1.90 + 0 1.90 + 0 2.30 + 0 2.30 + 0 2.60 + 0 2.60 + 0 3.40 + 0 3.70 + 0 3.70 + 0	7.40 + 0 7.40 + 0 7.30 + 0 7.30 + 0 7.30 + 0 7.30 + 0 7.30 + 0 7.40 + 0 7.40 + 0 9.20 + 0 9.20 + 0	756.7 834.8 834.838 810.8 810.7 159.4 1710.6 1345.9 1345.7 843.8 843.8 1014.4 889.3 889.3 1120.5	54.4 1.00 99.9746 0.995 99.45 0.683 68.3 1.00 (beta) 100. (beta) 0.0049 0.4743 0.718 71.8 28.0 1.00 99.983 99.986	5.374	312.1 days 312.13 days 70.8 days 70.83 days 3.35 days 14.28 days 14.284 days 12.700 h 9.46 min 9.46 min 83.81 days 83.788 days	0.15 0.15 0.30 0.30 0.15 0.15 0.30 0.30 0.30 0.30 0.30 0.30 0.30	E E E E E E E E E C E O E O C C C C C C
¹⁴ Fe(n,p) ⁵⁴ Mn ¹⁵ Fe(n,p) ⁵⁴ Mn ¹⁵ Fe(n,p) ⁵⁴ Mn ¹⁵ Fe(n,p) ⁵⁸ Co ¹⁵ Ti(n,p) ⁵⁸ Co ¹⁵ Ti(n,p) ⁴⁷ Sc ¹⁷ Ti(n,p) ⁴⁷ Sc ¹² S(n,p) ³² P ¹² S(n,p) ³² P ¹³ Zn(n,p) ⁶⁴ Cu ¹⁴ Zn(n,p) ⁶⁴ Cu ¹⁵ Tal(n,p) ²⁷ Mg ¹⁶ Ti(n,p) ⁴⁶ Sc ¹⁶ Fi(n,p) ⁴⁶ Sc	$ \begin{array}{r} 1.50 + 0 \\ 2.30 + 0 \\ 2.30 + 0 \\ 2.00 + 0 \\ 2.00 + 0 \\ 1.90 + 0 \\ 2.40 + 0 \\ 2.40 + 0 \\ 2.60 + 0 \\ 3.50 + 0 \\ 3.80 + 0 \\ 3.80 + 0 \\ 5.50 + 0 \\ \end{array} $	7.70 + 0 7.70 + 0 7.60 + 0 7.60 + 0 7.60 + 0 7.60 + 0 7.50 + 0 7.70 + 0 7.70 + 0 9.40 + 0 9.60 + 0 9.60 + 0 1.14 + 1	2.30 + 0 2.30 + 0 2.00 + 0 2.00 + 0 1.90 + 0 1.90 + 0 2.30 + 0 2.30 + 0 2.60 + 0 2.60 + 0 3.40 + 0 3.70 + 0 5.50 + 0	7.40 + 0 7.40 + 0 7.30 + 0 7.30 + 0 7.30 + 0 7.30 + 0 7.30 + 0 7.40 + 0 7.40 + 0 9.20 + 0 9.20 + 0 1.10 + 1	756.7 834.8 834.838 810.8 810.7 159.4 1710.(beta) 1710.6 1345.9 1345.7 843.8 1014.4 889.3 889.3 1120.5 846.8	54.4 1.00 99.9746 0.995 99.45 0.683 68.3 1.00 (beta) 100. (beta) 0.04743 0.718 71.8 28.0 1.00 1.00 99.983 99.986 0.989	5.374	312.1 days 312.1 days 70.8 days 70.83 days 3.35 days 14.28 days 14.28 days 14.28 days 12.700 h 9.46 min 9.46 min 9.3.788 days	0.15 0.15 0.30 0.30 0.15 0.15 0.30 0.30 0.30 0.30 0.30 0.15 0.15	E E E E E E E E E E E E E E E E E E E
54 Ee(n,p) 54 Mn 54 Ee(n,p) 54 Mn 56 Ni(n,p) 58 Co 58 Ni(n,p) 58 Co 57 Ti(n,p) 47 Sc 52 S(n,p) 32 P 54 Zn(n,p) 64 Cu 54 Zn(n,p) 64 Cu 52 Si(n,p) 64 Cu 53 Si(n,p) 64 Cu 54 Zn(n,p) 64 Cu 56 Si(n,p) 65 Cu 57 Si(n,p) 65 Cu 58 Si(n,p) 66 Cu 59 Si(n,p) 66 Cu 68 Si(n,p) 66 Cu 69 Si(n,p) 66 S	$ \begin{array}{r} 1.50 + 0 \\ 2.30 + 0 \\ 2.30 + 0 \\ 2.00 + 0 \\ 2.00 + 0 \\ 1.90 + 0 \\ 2.40 + 0 \\ 2.60 + 0 \\ 2.60 + 0 \\ 3.50 + 0 \\ 3.80 + 0 \\ \end{array} $	7.70 + 0 7.70 + 0 7.60 + 0 7.60 + 0 7.60 + 0 7.60 + 0 7.50 + 0 7.50 + 0 7.70 + 0 9.40 + 0 9.60 + 0 9.60 + 0	2.30 + 0 2.30 + 0 2.00 + 0 1.90 + 0 1.90 + 0 2.30 + 0 2.30 + 0 2.60 + 0 2.60 + 0 3.40 + 0 3.70 + 0 3.70 + 0	7.40 + 0 7.40 + 0 7.30 + 0 7.30 + 0 7.30 + 0 7.30 + 0 7.30 + 0 7.40 + 0 7.40 + 0 9.20 + 0 9.20 + 0	756.7 834.8 834.838 810.8 810.7 159.4 1710.(beta) 1710.6 1345.9 1345.7 843.8 843.8 1014.4 889.3 1120.5 846.8 846.7	54.4 1.00 99.9746 0.995 99.45 0.683 68.3 1.00 (beta) 100. (beta) 0.4743 0.718 71.8 28.0 1.00 99.983 99.986 0.989 98.85	5.374	312.1 days 312.13 days 70.8 days 70.83 days 3.35 days 14.28 days 14.284 days 12.700 h 9.46 min 9.46 min 83.81 days 83.788 days	0.15 0.30 0.30 0.15 0.15 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30	E E E E E E E E E C E O E O C C C C C C
¹⁴ Fe(n,p) ⁵⁴ Mn ¹⁴ Fe(n,p) ⁵⁴ Mn ¹⁸ Ni(n,p) ⁵⁸ Ce ¹⁸ Ni(n,p) ⁵⁸ Ce ¹⁸ Ni(n,p) ⁵⁸ Co ⁷ Ti(n,p) ⁵⁸ Cc ⁷ Ti(n,p) ⁴⁷ Sc ²² S(n,p) ³² P ¹⁴ S(n,p) ³² P ¹⁴ Zn(n,p) ⁶⁴ Cu ¹⁴ Zn(n,p) ⁶⁴ Cu ¹⁵ Xl(n,p) ²⁷ Mg ¹⁶ Ti(n,p) ⁴⁶ Se ⁶ Ti(n,p) ⁴⁶ Sc	$ \begin{array}{r} 1.50 + 0 \\ 2.30 + 0 \\ 2.30 + 0 \\ 2.00 + 0 \\ 2.00 + 0 \\ 1.90 + 0 \\ 2.40 + 0 \\ 2.40 + 0 \\ 2.60 + 0 \\ 3.50 + 0 \\ 3.80 + 0 \\ 3.80 + 0 \\ 5.50 + 0 \\ \end{array} $	7.70 + 0 7.70 + 0 7.60 + 0 7.60 + 0 7.60 + 0 7.60 + 0 7.50 + 0 7.70 + 0 7.70 + 0 9.40 + 0 9.60 + 0 9.60 + 0 1.14 + 1	2.30 + 0 2.30 + 0 2.00 + 0 2.00 + 0 1.90 + 0 1.90 + 0 2.30 + 0 2.30 + 0 2.60 + 0 2.60 + 0 3.40 + 0 3.70 + 0 5.50 + 0	7.40 + 0 7.40 + 0 7.30 + 0 7.30 + 0 7.30 + 0 7.30 + 0 7.30 + 0 7.40 + 0 7.40 + 0 9.20 + 0 9.20 + 0 1.10 + 1	756.7 834.8 834.838 810.8 810.7 159.4 1710.(beta) 1710.6 1345.9 1345.7 843.8 1014.4 889.3 889.3 1120.5 846.8	54.4 1.00 99.9746 0.995 99.45 0.683 68.3 1.00 (beta) 100. (beta) 0.04743 0.718 71.8 28.0 1.00 1.00 99.983 99.986 0.989	5.374	312.1 days 312.1 days 70.8 days 70.83 days 3.35 days 14.28 days 14.28 days 14.28 days 12.700 h 9.46 min 9.46 min 9.3.788 days	0.15 0.15 0.30 0.30 0.15 0.15 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30	E E E E E E E E E E E E E E E E E E E

Reaction	Fast Burst ^A		TRIGA Type ^A		- B # 10	Gamma/React		1	Recommetification of the stable	
	E_L , MeV	E_H , MeV	E_L , MeV	E _H , MeV	Eγ ^{<u>B</u>} ,_(keV)	Emission Probability ^B (Yield, %^C) %	$T_{1/2}{}^{B}$	Foil Mass, g ^D 1 Continue	
					2754.1	99.872				
²⁷ Al(<i>n</i> ,α) ²⁴ Na	6.50 + 0	1.21 + 1	6.50 + 0	1.17 + 1	1368.6	1.00		14.96 h	0.30	E,J
27 Al $(n,\alpha)^{24}$ Na	6.50 + 0	1.21 + 1	6.50 + 0	1.17 + 1	1368.6	99.993		14.9574 h	0.30	E,J
					2754.1	99.872				_
48Ti(<i>n,p</i>)48Sc	5.90 + 0	1.24 + 1	5.90 + 0	1.20 + 1	983.5	1.00		43.7 h	0.15	€
48Ti(<i>n,p</i>)48Sc	5.90 + 0	1.24 + 1	5.90 + 0	1.20 + 1	983.5	100.1		43.7 h	0.15	<i>E</i>
					1037.5	0.975				
					1037.5	97.56				
					1312.1	1.00				
					1312.1	100.1				
⁹³ Nb(<i>n,2n</i>) ^{92m} Nb	9.70 + 0	1.45 + 1	9.40 + 0	1.40 + 1	934.4	0.992		10.15 days		
⁹³ Nb(<i>n,2n</i>) ^{92m} Nb	9.70 + 0	<u>1.45 + 1</u>	9.40 + 0	<u>1.40 + 1</u>	934.4	99.1		10.15 days		
$\frac{127}{1(n,2n)^{126}}$	9.70 + 0	1.47 + 1	9.70 + 0	1.43 + 1	-388.6	0.341		13.02 days	0.25	€
$\frac{127}{(n,2n)^{126}}$	9.70 + 0	<u>1.47 + 1</u>	9.70 + 0	<u>1.43 + 1</u>	388.6	<u>35.6</u>		12.93 days	0.25	E -
					-666.	0.331				
					666.3	<u>32.9</u>				
⁶⁵ Cu(<i>n,2n</i>) ⁶⁴ Cu	$\frac{1.08 + 1}{1}$	1.57 + 1	$\frac{1.07 + 1}{1}$	1.53 + 1	1345.9	0.0049		12.7 h	0.15	E,M
⁶⁵ Cu(<i>n,2n</i>) ⁶⁴ Cu	<u>1.08 + 1</u>	<u>1.57 + 1</u>	<u>1.07 + 1</u>	<u>1.53 + 1</u>	1345.7	0.475		12.701 h	<u>0.15</u>	E,M
*63Cu(<i>n,2n</i>)62Cu	1.19 + 1	1.66 + 1	1.19 + 1	1.63 + 1	-875.7	0.00150		9.74 min	0.15	E,H
*63Cu(<i>n,2n</i>)62Cu	<u>1.19 + 1</u>	<u>1.66 + 1</u>	<u>1.19 + 1</u>	<u>1.63 + 1</u>	875.7	0.150		9.74 min	0.15	E,H —
$\frac{90}{2}$ r $(n,2n)^{89}$ Zr	$\frac{1.28+1}{1}$	1.69 + 1	$\frac{1.27 + 1}{1.27 + 1}$	$\frac{1.67+1}{}$	-909.1	0.999		78.4 h	0.10	
⁹⁰ Zr(<i>n,2n</i>) ⁸⁹ Zr	1.28 + 1	<u>1.69 + 1</u>	<u>1.27 + 1</u>	<u>1.67 + 1</u>	909.1	99.0		78.4 h	<u>0.10</u>	
⁵⁸ Ni(<i>n,2n</i>) ⁵⁷ Ni	1.32 + 1	1.71 + 1	1.31 + 1	1.69 + 1	1377.6	0.80		1.49 days	0.30	
⁵⁸ Ni(<i>n,2n</i>) ⁵⁷ Ni	<u>1.32 + 1</u>	<u>1.71 + 1</u>	<u>1.31 + 1</u>	<u>1.69 + 1</u>	<u>1377.6</u>	<u>81.2</u>		<u>35.9 h</u>	<u>0.30</u>	

^A Energy limits inside of which 95 % of the detector response occurs for each reaction (see Practice E261 and Refs (7,8). The foils are assumed to have Cd covers as described in Footnote E.

^C Fission yields can be found in Ref (12).

^D Choice of mass is based on assumed foil diameter of 1.27 cm.

4.1.5 Some frequently used reactions have shown relatively consistent deviations of measured to calculated activity ratios in many different spectra determinations. For example, when ENDF/B-V cross sections are used in the reaction 63 Cu $(n,\gamma)^{64}$ Cu, the calculated activity is usually low, and an adjustment code will try to raise the spectrum in the vicinity of Cu resonances. In fact, however, this consistent behavior indicates that the tabulated cross-section values in some important energy region are too small. The analyst must then choose one of the following alternatives: (1) leave out reactions which have demonstrated consistent deviations; (2) seek better cross-section sets; (3) assign wide error bars or low statistical weight to these reactions. It is recommended that the first option be chosen because a sufficient number of well-established cross sections do exist to satisfactorily determine fast reactor spectra. Furthermore, if the cross section for a particular reaction is not well established, and it is assigned too large a weight in the spectrum adjustment procedure, the final spectrum can be severely distorted. Other suspect reactions are noted in Table 1 with an asterisk.

Note 4—Some of the reactions not recommended at this time (on the basis of inconsistencies among recommended cross sections) may be upgraded when more recent evaluations are applied to a wide range of neutron spectra.

4.2 Foil Impurities:

- 4.2.1 Foil impurities are especially serious for a moderated source (TRIGA reactor) when an impurity leads to the same reaction product by way of thermal-neutron capture. Some examples of these foils, with impurities in parentheses, are ²³⁸U (²³⁵U), ²⁷Al (²³Na), ⁵⁶Fe (⁵⁵Mn), and ²⁴Mn (²³Na).
- 4.2.2 For a soft spectrum, such as the TRIGA J-tube spectrum [boral (boron-aluminum alloy) shielded], the number of fissions in the ²³⁵U foil (Cd covered) is about 100 times the number occurring in the ²³⁸U foil; therefore, the ²³⁸U must have an impurity

^B Data taken from Refs (9-11). Ref (11) takes precedent, but it only addresses reactions used in detector calibration. In other cases, Ref (9) provides the half-life and Ref (10) provides the gamma yields. Many gamma-ray energies rounded to nearest 0.1 keV. For uncertainties on values, see references.

^E Cd covers 0.5 to 1-mm thicknesses. Pairs of bare and Cd-covered foils are advantageous for resonance reactions.

^FUse ⁵⁹Co instead of ¹⁹⁷Au and ⁵⁵Mn for very long irradiations.

^G Use dilute aluminum-gold alloy (<0.2 % Au) when possible.

^H Do not count the 0.511 line.

Use in the form of NaCl.

^J The 1986 edition of Ref (13) has a typographical error for the half-life of ²⁴Na. The correct number can be found in previous editions. The correct number can also be found in Ref (9).

 $^{^{\}kappa}$ This is the 40.27-h daughter of 12.75-day 140 Ba. Wait 5 days for maximum decay rate (see Test Method E393).

^L E_t = 0.01 MeV shielded with ¹⁰B sphere. (Use of ¹⁰B shield is important for soft (TRIGA) spectra where Φ(E < 0.01 MeV) will otherwise dominate).

M Precautions must be taken in counting because of the low gamma-ray energy. See Test Method E1297for details of 93mNb use. For 103mRh, X-rays are typically counted rather than listed gamma ray. See Ref (10).

N If a ¹⁰B sphere is used for the ²³⁹Pu foil, then a ¹⁰B sphere should also be used for the ²³⁷ Np foil so that correction for ²³⁹Pu impurity in the ²³⁷Np foil can be made. O If a ¹⁰B sphere is used for the ²³⁵U foil, then a ¹⁰B sphere should also be used for the ²³⁸U foil so that correction for ²³⁵U impurity in the ²³⁸U foil can be made.

P Radioactivity of ²³²Th interferes with the ¹⁴⁰La line.

^Q At high energies (>10 MeV), account for (n,np) contributions from higher atomic number Ti isotopes.

^R See Refs (14) and (15).

^S Requires β counting techniques, see Test Method E265.

^T Maximum Mn impurity = 0.001 %, Cd covered. Do not use ⁵⁶Fe foil for long irradiations.

^{*} Not recommended for use at this time either because of large uncertainties or because of conflicts with other reactions during spectrum adjustment procedures.

level of 235 U of no more than about 200 ppm for an uncertainty of 2 % or less in determining accurately the 238 U activity. Higher impurity levels of 235 U can be tolerated for Godiva-type reactors where the fluence below 10 keV is much lower, or with TRIGA-type reactors if the 235 U foil data are used for correcting the 238 U activity.

- 4.2.3 When the 56 Fe foil (Cd covered) is used in a TRIGA spectrum, it should have no more than 10 ppm 55 Mn impurity to keep the contribution from the 55 Mn(n, γ) 56 Mn reaction to less than 2 %. Similarly, the 55 Mn impurity should be no more than 100 ppm when using the 56 Fe foil at 50 cm from a Godiva-type reactor (which is approximately 2 m above the concrete floor) in order to achieve the same level of accuracy. Data from a 55 Mn foil (Cd covered) can be used to correct the 56 Fe data if the impurity correction is ≤ 20 % of the total (n,p) activation, and the percent of manganese in iron is accurately known.
 - 4.3 Influence of Nuclear Data on Foil Selection:
- 4.3.1 Since the total number of interactions is deduced from an absolute specific activity determination, that activity should be determined with good accuracy (of the order of 5 %), and the foils selected should have gamma-ray yields known to the same or better accuracy. Some of the factors involved in determining these yields include conversion-electron production, branching ratio to a given energy level, and fission yield.
- 4.3.2 The 1596-keV gamma-ray transition from ¹⁴⁰ La produced by ²³²Th fission is not usually useful because of interference from ²³²Th radioactivity. This often has led to the use of the 537-keV transition from the ¹⁴⁰Ba precursor of ¹⁴⁰La, having a gamma-transition probability of 0.244 per ¹⁴⁰Ba decay. The use of ¹⁴⁰Ba generally requires the chemical separation of this isotope from the rest of the fission products so that the 537-keV line can be seen above competing lines. See Test Method E393.
- 4.3.3 The choice of element, and hence the gamma-ray transition, directly influences the accuracy of determining the specific activity induced by neutron irradiation. It also influences the final choice of foil thickness, in that the selection of an element resulting in a low-energy gamma ray may lead to a large self-absorption correction. For example, the ²³²Th foil of Table 1 has a maximum attenuation of 22 %, or an average correction of about 11 %, for the 537-keV transition. This represents an upper limit for the thickness of that foil. Therefore, the self-attenuation of gamma rays, as well as the neutron self-shielding discussed later, will influence the foil selection.

Note 5—For other considerations in the selection of specific foils, see Guide E844, Practice E261, and Test Methods E262, E263, E264, E265, E266, E704, and E705.

5. Apparatus

- 5.1 The gamma-ray detector should be a germanium-type detector (either Ge(Li) or intrinsic) with an energy resolution of 2.5 keV or better (full-width at half-maximum (FWHM) at 1173 keV). Associated equipment would include a multichannel pulse-height analyzer and a precision pulse generator with calibrated pulse-height and pulse-rate inputs into the detection system.
- 5.2 Foil and source holders should be used to provide precise positioning of a gamma-ray standard source and of each activated foil with respect to the detector. Required precision is about 0.2 mm or better in distance from the window of the detector or in lateral alignment.
- 5.3 National standard sources that are traceable to NIST (or their equivalent) should be used for calibration of the detection system. Ps://standards.iteh.a/catalog/standards/sist/12d25b5e-d0ib-4488-a5d0-77f06cc5cde9/astm-e720-11

6. Precautions

6.1 Scattering Problems—A sensor with a strong resonance absorption, such as a thick 235 U foil, should not be placed in front of a 1/v detector, and thick foils with covers should not be stacked because accurate corrections for the resultant scattering are difficult to determine. With an isotropic neutron-fluence, Φ_o , incident on stacked foils, the reduction in the fluence rate caused by scattering at a given foil can be estimated by using the following equation:

$$\Phi = \Phi_{o}e^{-\sum_{i}\sigma_{i}X_{i}}$$

where Φ is the attenuated fluence, Σ_i is a summation-over-i symbol, σ_i is the total macroscopic scattering cross section in cm⁻¹, and X_i is the thickness of the ith foil in centimetres. The summation is up to the foil of interest, located at its appropriate depth (distance from source) in the foil stack. For best results, the reduction in fluence rate should be less than 10 % for the foil located at the maximum depth.

6.2 Foil Self-Shielding—For the thicknesses of the foils recommended, the correction for self-shielding is appreciable only for pure gold foils (with its highly absorbing resonance at about 5 eV), the correction for a 0.025-mm thick foil being about a factor of two for epicadmium neutrons (that is, neutrons with energies greater than 0.5 eV) (16).

Note 6—Dilute aluminum-gold alloys are available and do not generally require self-shielding corrections.

6.3 Fluence Nonuniformity—If all the foils cannot be located in a region of uniform fluence rate (as determined by symmetry considerations), they can be located at different positions (and, hence, with different fluence rates) as long as the neutron energy spectrum is constant. If the fluence varies by more than 3 % from point to point, fluence monitors should be used with each foil. Around a Godiva-type reactor, sulfur foils can serve as monitors near the individual foils. Where space is more limited, then nickel [58 Ni(n,p) 58 Co], iron [54 Fe(n,p) 54 Mn], or even aluminum [27 Al(n, α) 24 Na] should be considered for monitors. (See Practice E261 for other relevant considerations.) Often a better solution is obtained by mounting all foils on a rotating disk or ring to ensure that they receive the same fluence.

6.4 Fluence Rate Depression—At low energies, fluence rate depression can be significant for bare thermal-neutron detectors near cadmium-covered foils if both are embedded in a moderator. This is because the cover on one foil can shadow adjacent bare foils. At high energies, depression can be significant for foils irradiated under the same conditions if the moderator contains reactor fuel. However, this is ordinarily not a problem, since in the sizable irradiation volumes normally used for radiation damage studies, the cadmium covers (as well as the foils) generally subtend a negligibly small solid angle at the point of any surrounding moderator or fuel. Fluence rate depression is usually insignificant for irradiation in a Godiva reactor glory hole.

7. General Handling Procedures

7.1 Foil Encapsulation—Fission foils should be encapsulated in sealed containers to avoid oxidation, loss of material, and for health-safety requirements. If a ²³⁹Pu foil is used (instead of the much safer ²³⁵U foil), it will require special encapsulation and periodic monitoring to check for leakage of the material. Copper encapsulation has been found satisfactory for ²³⁵U, ²³⁸U, ²³⁷Np, and ²³²Th foils. The thickness of the copper capsule should be about 0.1 to 0.25 mm at the flat surfaces and soldered at the periphery.

7.2 Foil Covers:

- 7.2.1 As noted in Table 1, cadmium covers of 0.5 to 1-mm thickness are prescribed for all fission foils and 1/v detectors. Cadmium covers also should be used for finite-threshold foils with trace impurities that yield the same reaction product by means of thermal-neutron capture. Examples are foils such as ²³⁸U, ⁵⁶Fe, ⁵⁸Ni, and ²⁷Al with impurities of ²³⁵U, ⁵⁵Mn, ⁵⁹Co, and ²³Na, respectively. Depending on the concentration, such impurities can lead to large correction factors. For large correction factors (that is, greater than 5 %), cadmium-covered foils made of the impurity materials should be irradiated. Then, corrections can be made with good accuracy if the impurity concentration in the primary threshold foil is accurately known. If the impurity concentration is not known, a thermal-neutron activation analysis of the foil can provide data for the necessary correction. Cadmium covers may not be required for foils irradiated in the empty "glory hole" of a fast-pulse reactor, a cavity in which little or no moderator material is normally present (that is, less than 0.5 g/cm²).
- 7.2.2 Covers of 10 B for fission foils are useful when measuring a soft TRIGA spectrum. However, if a boral shield that provides good 4- π geometry surrounds the irradiation cavity, and if a negligible amount of moderator is contained within the shield, then the 10 B covers may not be required. The effect of the boral shielding should be accounted for properly when the neutron spectrum is adjusted with a proper computer code. More is said about boron cover corrections in 7.2.4.

Note 7—Spectra adjustment codes are discussed in Guides E721 and E944.

- 7.2.3 If no 10 B covers are used for the foils, and if the TRIGA irradiation cavity is only partially shielded by boral, then it will be difficult to determine the neutron spectrum from 10^{-2} MeV down to about 3×10^{-7} MeV. If the TRIGA irradiation cavity has only partial boral shielding, it is important that all the fission foils, all the 1/v foils, and the foils with important 1/v impurities be placed in a boral "box" or a 10 B cover. For best results, a 10 B cover of 1 to 1.8 g/cm² of (93 %) 10 B should be used. In this way, the fraction of activations arising from neutrons in the energy range from 3×10^{-7} MeV to 10^{-2} MeV will be reduced greatly. The effect of the cover thickness can be accounted for by a spectrum adjustment code provided that the effective attenuation cross section that accounts for scattering in the cover is available. See 7.2.5.
- 7.2.4 For a Godiva-type reactor, ¹⁰B covers may not be required, and cadmium covers may be sufficient for irradiation distances of less than 1 m from the reactor when the reactor is located a few metres above the concrete floor. Cadmium covers also may be used in the glory hole where the number of low-energy neutrons is insignificant. If ¹⁰B covers are used, activities may require correction for scattering by the ¹⁰B. The correction can be determined either experimentally with pure finite-threshold fission foils (²³⁷Np or ²³²Th) that contain negligible zero-threshold impurities, or with a neutron transport calculation that takes into account the thickness of the material (17).
- 7.2.5 The attenuation by a boron cover of the neutron fluence is not adequately treated by many of the spectrum adjustment codes (18). Some versions of the spectrum adjustment code, SAND II (19), for example, uses a simple exponential attenuation function versus energy, and because most irradiations are conducted in wide-beam or isotropic configurations, scattered neutrons are not in general lost from the beam. As a result, the absorption cross section of the boron should generally be used to determine the attenuation. However, in many configurations (such as narrow-beam geometry or down scattering of the neutrons to lower energy) the scattering portion of the cross section can remove additional neutrons and the true effective removal cross section value will fall somewhere in between the total and the absorption cross section. This is especially noticeable if the response of the foil is concentrated above the 10-keV limit where the ¹⁰B absorption ceases to dominate the cross section. Thus, for high-threshold fission foils such as ²³⁸U and ²³⁷Np or a normal threshold foil such as nickel, the additional scattering will result in additional attenuation. For example, some experiments and calculations indicate that these corrections are of the order of 10 % for a 1.65-g/cm ¹⁰B cover and a thin 12.7-mm diameter fission foil (20). Other work indicates that these scattering corrections may be somewhat larger (21). Strictly speaking, a calculation of the transport in the full-experiment geometry through the boron cover should be performed for each geometry (18). Measurements with a high-threshold foil, ⁵⁸Ni(n,p)⁵⁸Co, have shown a transmission factor of 0.9 in a Godiva-type exposure geometry (6). This compares with a calculated value (for which only the boron capture cross section is used) of 0.96.

Note 8—A monitor foil such as nickel used both inside and outside a boron ball can be used to normalize the boron-covered-fission-foil exposure to that of the rest of the foil set in case positioning errors are likely to be significant. The nickel ratio is not very sensitive to spectrum shape. The procedure