INTERNATIONAL STANDARD

Second edition 2019-07

Rubber hoses and tubing for fuel circuits for internal combustion engines — Specification —

Part 1: **Diesel fuels**

iTeh ST Tuyaux de caoutchouc et flexibles pour les circuits de carburant pour les moteurs à combustion interne — Spécifications — (stance active acti

<u>ISO 19013-1:2019</u> https://standards.iteh.ai/catalog/standards/sist/e9d1c246-0b78-4c02-877f-08e3b4dab7e9/iso-19013-1-2019

Reference number ISO 19013-1:2019(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 19013-1:2019</u> https://standards.iteh.ai/catalog/standards/sist/e9d1c246-0b78-4c02-877f-08e3b4dab7e9/iso-19013-1-2019

COPYRIGHT PROTECTED DOCUMENT

© ISO 2019

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Fax: +41 22 749 09 47 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Page

Contents

Forew	ord	iv
1	Scope	1
2	Normative references	
3	Terms and definitions	2
4	Classification	2
5	Sizes 5.1 Tubing 5.2 Hoses	
6	Performance requirements for hose and tubing	4
7	Frequency of testing	6
8	Marking	6
Annex	A (normative) Cleanliness and extractables test	7
Annex	B (normative) Resistance of tubing to tearing	9
Annex	c C (normative) Method for determining the resistance to surface contamination	
Annex	D (normative) Life-cycle test	
Annex	E (informative) Example of how a non-standard type of hose or tubing could be specified by an original equipment manufacturer (OEM) using a matrix	
Annex	r F (normative) Type approval tests (as defined in <u>Clause 6</u>)	
Annex	r G (normative) Routine tests (as defined in Clause 7)	
	H (informative): Production acceptance: tests://e9d1c246-0b78-4c02-877f- 08e3b4dab7e9/iso-19013-1-2019	

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html. (standards.iteh.ai)

This document was prepared by Technical Committee ISO/TC 45, *Rubber and rubber products*, Subcommittee SC 1, *Rubber and plastics hoses and hose assemblies*. https://standards.iteh.al/catalog/standards/sist/e9d1c246-0b78-4c02-877f-

This second edition cancels and replaces the first edition (ISO 19013-1:2005), of which it constitutes a minor revision.

The main changes compared to the previous edition are as follows:

- Normative references have been updated;
- <u>Clause 3</u> "Terms and definitions" has been introduced to conform to ISO/IEC Directives, Part 2, 2018;
- Editorial changes in <u>Clause 8</u> "Marking" have been made.

A list of all parts in the ISO 19013 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

Rubber hoses and tubing for fuel circuits for internal combustion engines — Specification —

Part 1: **Diesel fuels**

WARNING — Persons using this document should be familiar with normal laboratory practice. This document does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices.

1 Scope

This document specifies the requirements for rubber tubing and hoses used in diesel fuel circuits for internal combustion engines. The diesel fuels covered include "bio-diesels" which consist of the methyl ester of rape seed oil at levels up to 20 % by volume in conventional diesel fuels.

This document can also be applied as a classification system to enable original equipment manufacturers (OEMs) to detail a "line call-out" of tests for specific applications where these are not covered by the main types specified (see example in Annex E). In this case, the hose or tubing would not carry any marking showing the number of this document but can detail the OEM's own identification markings as shown on their part drawings. (standards.iteh.ai)

2 Normative references ISO 19013-1:2019

https://standards.iteh.ai/catalog/standards/sist/e9d1c246-0b78-4c02-877f-

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 188, Rubber, vulcanized or thermoplastic — Accelerated ageing and heat resistance tests

ISO 1402, Rubber and plastics hoses and hose assemblies — Hydrostatic testing

ISO 1629, Rubber and latices — Nomenclature

ISO 1817, Rubber, vulcanized or thermoplastic — Determination of the effect of liquids

ISO 3302-1, Rubber — Tolerances for products — Part 1: Dimensional tolerances

ISO 4926, Road vehicles — Hydraulic braking systems — Non-petroleum-base reference fluids

ISO 4671, Rubber and plastics hoses and hose assemblies — Methods of measurement of the dimensions of hoses and the lengths of hose assemblies

ISO 6133, Rubber and plastics — Analysis of multi-peak traces obtained in determinations of tear strength and adhesion strength

ISO 7233:2016, Rubber and plastics hoses and hose assemblies — Determination of resistance to vacuum

ISO 7326:2016, Rubber and plastics hoses — Assessment of ozone resistance under static conditions

ISO 8031, Rubber and plastics hoses and hose assemblies — Determination of electrical resistance and conductivity

ISO 8033, Rubber and plastics hoses — Determination of adhesion between components

ISO 19013-1:2019(E)

ISO 10619-1:2017, Rubber and plastics hoses and tubing — Measurement of flexibility and stiffness — Part 1: Bending tests at ambient temperature

ISO 10619-2, Rubber and plastics hoses and tubing — Measurement of flexibility and stiffness — Part 2: Bending tests at sub-ambient temperatures

ISO 23529, Rubber — General procedures for preparing and conditioning test pieces for physical test methods

SAE J2027, Standard for Protective Covers for Gasoline Fuel Line Tubing

SAE J2044:2009, Quick Connect Coupling Specification for Liquid Fuel and Vapor/Emissions Systems

SAE J2260, Nonmetallic Fuel System Tubing with One or More Layers

EN 14214, Automotive fuels — Fatty acid methyl esters (FAME) for diesel engines — Requirements and test methods

3 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at <u>https://www.iso.org/obp</u>
- IEC Electropedia: available at http://www.electropedia.org/REVIEW

4 Classification

(standards.iteh.ai)

The product shall consist of extruded rubber<u>materials with</u> or without an integral reinforcement which may or may not be pre-formed before final vulcanization. The product may also have a rubber or thermoplastic barrier layer, either as an internal layer or forming the inner liner, to impart improved fluid resistance and/or reduced fuel vapour permeability.

Seven hoses and tubings for specific applications are specified, as follows:

- Class A = Pressurized [0,7 MPa (7 bar) working pressure] feed and return lines from the fuel tank to the engine compartment (-40 °C to +80 °C continuous)
- Class B = Pressurized [0,2 MPa (2 bar) working pressure] feed and return lines from the fuel tank to the engine compartment (-40 °C to +80 °C continuous)
- Type 2
 - Class A = Pressurized [0,7 MPa (7 bar) working pressure] feed and return lines in the engine compartment (-40 °C to +100 °C continuous)
 - Class B = Pressurized [0,2 MPa (2 bar) working pressure] feed and return lines in the engine compartment (-40 °C to +100 °C continuous)
- Туре 3
 - Class A = Pressurized [0,7 MPa (7 bar) working pressure] feed and return lines in the engine compartment (-40 °C to +125 °C continuous)
 - Class B = Pressurized [0,2 MPa (2 bar) working pressure] feed and return lines in the engine compartment (-40 °C to +125 °C continuous)
- Type 4 Low pressure [0,12 MPa (1,2 bar) working pressure] fuel filler, vent and vapour handling (-40 °C to +80 °C continuous)

[—] Type 1

5 Sizes

5.1 Tubing

When determined by the methods described in ISO 4671, inside diameters and wall thicknesses shall be as specified in <u>Table 1</u>.

Tolerances shall be selected from the appropriate categories specified in ISO 3302-1: M3 for moulded hoses: E2 for extrusions.

The thickness of the barrier layer, where applicable, shall be included in the total nominal wall thickness shown in <u>Table 1</u>.

Inside diameter	Wall thickness
mm	mm
3,5	3,5
4	3,5
5	4
7	4,5
9	4,5
iTeh ST ¹¹ ANDARI	PREV ⁴ ⁵ / _{4,5} EW

Table 1 — Tubing inside diameters and wall thicknesses

NOTE For information, the unions on which the tubing is fitted have the following diameters: 4 mm, 4,5 mm, 6 mm or 6,35 mm, 8 mm, 10 mm, 12 mm and 14 mm.

ISO 19013-1:2019

5.2 Hoses https://standards.iteh.ai/catalog/standards/sist/e9d1c246-0b78-4c02-877f-08e3b4dab7e9/iso-19013-1-2019

When determined by the methods described in ISO 4671, the dimensions and concentricity of hoses shall be in accordance with <u>Tables 2</u> and <u>3</u>.

The thickness of the barrier layer, where applicable, shall be included in the total nominal wall thickness shown in <u>Table 2</u>.

Inside diameter	Tolerance	Wall thickness	Outside diameter	Tolerance
3,5	±0,3	3	9,5	±0,4
4	±0,3	3	10	±0,4
5	±0,3	3	11	±0,4
6	±0,3	3	12	±0,4
7	±0,3	3	13	±0,4
7,5	±0,3	3	13,5	±0,4
8	±0,3	3	14	±0,4
9	±0,3	3	15	±0,4
11	±0,3	3,5	18	±0,4
12	±0,3	3,5	19	±0,4
13	±0,4	3,5	20	±0,6
16	±0,4	4	24	±0,6
21	±0,4	4	29	±0,6
31,5	+0.5 +1 Ceh S	CANDARD	PREVIEW	±1
40	+0,5	standards.it	eh.ai) ⁵⁰	±1

Table 2 — Hose dimensions

Dimensions in millimetres

Table 3 — Hose concentricity

	1.	
nsv/standards ffen al/catalo	$\sigma/s1$	standards/sist/e9d1c246-0b78-4c02-877f-

Inside diameter ^{08e3b4dab7}	7e9/iso- Maximum y ariation from concentricity	
mm	mm	
Up to and including 3,5	0,4	
Over 3,5	0,8	

6 Performance requirements for hose and tubing

httr

Tests shall be selected from the following list for each application of hose or tubing, based on the performance requirements for the finished product. Type approval tests (as defined in <u>Clause 7</u>) for each hose or tubing group given in <u>Annex F</u> shall be used.

- a) **Burst pressure**: When determined in accordance with ISO 1402, the minimum burst pressure for Types 1, 2 and 3, Class A, shall be 3,0 MPa gauge (30 bar) and for Class B shall be 1,2 MPa gauge (12 bar). Type 4 shall be 0,5 MPa gauge (5 bar). Additionally, after fuel resistance testing [test m]], hoses and tubing shall not have a burst pressure of less than 75 % of the original burst pressure.
- b) Adhesion (for all constructions with two or more bonded layers only): When determined by the appropriate procedure in ISO 8033, the adhesion between each pair of bonded layers shall not be less than 1,5 kN/m.
- c) **Low-temperature flexibility**: When tested in accordance with ISO 10619-2:2017, Method B, a length of hose or tubing which has been previously kept filled with ISO 1817 liquid C for 72 h ± 2 h at 21 °C ± 2 °C and then kept cooled at -40 °C ± 2 °C for 72 h ± 2 h shall not exhibit any cracking when examined under × 2 magnification after bending around a similarly cooled mandrel the radius of which is 12 times the nominal bore size of the hose or 25 times the nominal bore size of the tubing. The hose or tubing shall then conform to the burst strength requirement of test a).

- d) **Internal cleanliness**: When determined in accordance with <u>Annex A</u>, the insoluble impurities shall not exceed 5 g/m² and the fuel-soluble impurities shall not exceed 3 g/m².
- e) **Extractable waxy materials**: When determined in accordance with Annex A, the extractable waxy materials shall not exceed $2,5 \text{ g/m}^2$.
- f) **Tear resistance** (applicable to tubing only): When determined in accordance to Annex B, the minimum tear resistance shall be 4,5 kN/m.
- **Ozone resistance**: When tested in accordance with method 1 of ISO 7326:2016, method 1 g) under the following conditions, the hose or tubing shall not show cracking when examined under × 2 magnification:

Partial pressure of ozone	50 mPa ± 3 mPa
Duration	72 h ± 2 h
Temperature	40 °C ± 2 °C
Elongation	20 %

- Heat ageing resistance: After ageing for one or more of the following times and temperatures in h) accordance with ISO 188, all constructions shall meet the adhesion requirements of test b), the lowtemperature flexibility requirements of test c) and the ozone resistance requirements of test g):
 - 1) 1 000 h at 80 °C;
- (standards.iteh.ai)
- 2) 1 000 h at 100 °C;
- <u>ISO 19013-1:2019</u>
- 1 000 h at 125 °C; https://standards.iteh.ai/catalog/standards/sist/e9d1c246-0b78-4c02-877f-3) 08e3b4dab7e9/iso-19013-1-2019
- 168 h at 100 °C; 4)
- 5) 168 h at 125 °C;
- 6) 168 h at 140 °C.

NOTE The 1 000 h tests represent long-term working temperatures and the 168 h tests represent short-term peak working temperatures.

- **Resistance to surface contamination by engine oil**: When tested in accordance with Annex C i) using ISO 1817 oil 3, all constructions shall meet the adhesion requirements of test b), the cold flexibility requirements of test c) and the ozone resistance requirements of test g).
- Resistance to surface contamination by non-petroleum hydraulic (brake/clutch) fluid: When i) tested in accordance with Annex C using hydraulic fluid to ISO 4926, all constructions shall meet the adhesion requirements of test b), the cold flexibility requirements of test c) and the ozone resistance requirements of test g).
- k) **Resistance to kinking** (this requirement applies only to straight hoses and tubing with a nominal bore size of 16 mm or less): When determined in accordance with ISO 10619-1:2017 method A1, the maximum coefficient of deformation (T/D) shall not exceed 0,7. The mandrel diameter shall be 140 mm for hoses and tubing up to nominal bore 11 mm, and 220 mm for hoses and tubing of nominal bore from 12 mm to 16 mm.
- **Resistance to suction** (this requirement applies only to straight hoses and tubing): When the hose I) or tubing is tested in accordance with ISO 7233:2016, method A, at 0,08 MPa absolute (0,8 bar) for 15 s to 60 s duration with a ball of diameter $0.8 \times$ the nominal bore, the ball shall traverse the full length of the hose or tubing.

- m) **Resistance to fuels**: When tested in accordance with SAE J2260 for a test duration of 5 000 h using one or more of the following test fuels at a fuel temperature of 80 °C ± 2 °C, all constructions shall meet the adhesion requirements of test b), the cold flexibility requirements of test c), the ozone resistance requirements of test g), the kinking resistance of test k) and the suction resistance of test l):
 - 1) 100 % by volume of liquid F (ISO 1817).
 - 2) A mixture of 80 % by volume of liquid F (ISO 1817) and 20 % by volume of rape seed methyl ester (EN 14214).
- n) **Burn-through resistance**: When tested by the burn-through resistance test specified in SAE J2027, the hose or tubing shall withstand a minimum of 60 s exposure to flame without loss of pressure.
- o) **Electrical resistance**: When determined in accordance with ISO 8031, the electrical resistance shall not exceed 10 $M\Omega$.
- p) **Life-cycle test** (types 1, 2 and 3 only): When tested in accordance with <u>Annex D</u>, hose and tubing shall meet the adhesion requirements of test b), the cold flexibility requirements of test c) and the ozone resistance requirements of test g).

7 Frequency of testing

Type approval and routine tests that shall be used are specified in <u>Annex F</u> and <u>Annex G</u>, respectively.

Type approval is obtained by the manufacturer supplying evidence that all requirements of this document are met by the method of manufacture and the hose design. The tests shall be repeated at a maximum of five-year intervals, or whenever a change in the method of manufacture or the materials occurs.

Routine tests shall be carried out on each finished length of hose prior to despatch.

Production acceptance tests are those tests, specified in Annex H, which should be carried out by the manufacturer to control the quality of his manufacture. The frequencies specified in <u>Annex H</u> are for guidance purposes only.

8 Marking

All constructions shall be continuously marked with the following:

- a) the manufacturer's name or trade mark;
- b) the classification in accordance with <u>Clause 3</u>;
- c) the inside diameter, in millimetres;
- d) the fuel, e.g. diesel;
- e) the year and quarter of manufacture;
- f) the recycling code for the construction material, in accordance with ISO 1629.

EXAMPLE XXX/ISO 19013-1:Type 2 Class A/11/Diesel/1Q19/NBR

Annex A

(normative)

Cleanliness and extractables test

A.1 Scope

This annex specifies a method for the determination of the quantity of insoluble impurities ("dirt"), liquid C solubles and waxy extractables present in hoses and tubing used in liquid-fuel circuits.

A.2 Principle

A quantity of ISO 1817 liquid C is left for a period of 24 h at ambient temperature inside a length of hose or tubing. After this time, the test piece is emptied and the inside washed by gravity flow of liquid C.

The total solution is collected and the insoluble matter filtered out, dried and weighed. The remaining solution is evaporated to dryness and the total content of liquid C soluble material calculated. The waxy material is dissolved from this residue with methanol and the resulting solution is evaporated to dryness and weighed.

iTeh STANDARD PREVIEW

A.3 Apparatus and materiatandards.iteh.ai)

- A.3.1 Glass filter funnel. ISO 19013-1:2019 https://standards.iteh.ai/catalog/standards/sist/e9d1c246-0b78-4c02-877f-
- **A.3.2 Evaporating dishes** (two).^{08e3b4dab7e9/iso-19013-1-2019}
- **A.3.3** Beaker, 250 cm.
- **A.3.4 Fuel evaporator**, fitted with an extraction hood.
- **A.3.5** Ventilated drying oven, capable of being maintained at 85 °C ± 5 °C.
- A.3.6 Balance, accurate to 0,1 mg.
- A.3.7 Sintered-glass filter, porosity grade P3.
- **A.3.8** Liquid C, as specified in ISO 1817.
- A.3.9 Methanol, minimum purity 99 %.
- **A.3.10** Metal stoppers, to seal the ends of the hoses/tubing.

A.4 Procedure

Take a length of hose or tubing between 300 mm and 500 mm in length and measure its internal dimensions. Plug one end with a metal stopper (A.3.10) and hang vertically. Fill this test piece with liquid C (A.3.8) and seal the top end with another metal stopper. Calculate the internal surface area in contact with liquid C taking into account the area in contact with the stoppers. Leave the test pieces for 24 h ± 30 min at 21 °C ± 2 °C.