Natural gas — Upstream area — Determination of composition by Laser Raman spectroscopy

ICS: 75.060
Contents

Foreword .. iv
Introduction ... v
1 Scope .. 1
2 Normative references .. 1
3 Terms and definitions ... 1
4 Principle ... 2
 4.1 Working principle of the laser Raman analyzer .. 2
 4.2 Calculation .. 3
5 Instruments ... 4
 5.1 Laser Raman gas analyzer .. 4
 5.2 Laser specifications ... 4
 5.3 Detection module ... 4
 5.4 Signal processing and user interface .. 4
 5.5 Sample filtration and Probe ... 4
 5.6 Gas pressure regulator ... 4
 5.7 Sulfur compound absorber .. 4
6 Reagents and materials .. 5
 6.1 Zero gas .. 5
 6.2 Base span calibration gases ... 5
 6.3 Working span calibration gases .. 5
7 Measurement procedures .. 5
 7.1 preparation .. 5
 7.2 Calibration .. 6
 7.2.1 Calibration frequency ... 6
 7.2.2 Calibration procedure ... 6
 7.2.3 Zero calibration ... 6
 7.2.4 Base span calibration .. 6
 7.2.5 Working span calibration ... 6
 7.3 Sampling and sample analysis .. 6
 7.4 Data record ... 7
8 Repeatability ... 7
9 Uncertainty evaluation .. 7
 9.1 General .. 7
 9.2 Uncertainty of I_i and I_{Ri} .. 7
 9.3 Uncertainty of C_{RI} ... 8
 9.4 Uncertainty of result ... 8
10 Test report ... 9

Annex A (Informative) Statistical procedure for estimation of the repeatability .. 10

Bibliography ... 17
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO’s adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html.

The committee responsible for this document is ISO/TC 193, Natural gas, Subcommittee SC 3, Upstream area.
Introduction

Gas chromatography methods for determination of composition in natural gas already exist as International Standards or technical report:

- ISO 6974-3, Natural gas-Determination of composition and associated uncertainty by gas chromatography-Part 3: Precision and bias;
- ISO 6974-4, Natural gas-Determination of composition with defined uncertainty by gas chromatography Part 4: Determination of nitrogen, carbon dioxide and C1 to C5 and C6+ hydrocarbons for a laboratory and on-line measuring system using two columns;
- ISO 6974-5, Natural gas-Determination of composition and associated uncertainty by gas chromatography Part 5: Isothermal method for nitrogen, carbon dioxide, C1 to C5 hydrocarbons and C6+ hydrocarbons;
- ISO 6974-6, Natural gas-Determination of composition with defined uncertainty by gas chromatography - Part 6: Determination of hydrogen, helium, oxygen, nitrogen, carbon dioxide and C1 to C8 hydrocarbons using three capillary columns;
- ISO/TR 14749, Natural gas -Online gas chromatograph for upstream area.

Gas laser Raman spectrometry is a simpler and more direct analysis method than gas chromatography. Gas laser Raman offers a faster and more convenient means of determining composition of upstream area natural gas because it is an entirely optical method operating at the speed of light with no moving parts. Natural gas exploration and development benefits from fast determination of gas composition and real-time monitoring of gas composition better optimizes natural gas treatment processes.

Gas laser Raman spectrometry enables rapid and simultaneous analysis of multiple gas species because each type of gas molecule emits unique light frequencies shifted from the frequency of laser light striking it. This "Raman scattering" is instantaneous and directly proportional to the number of molecules the light impacts. This simple principle allows continuous on-site real-time data monitoring and control, it will bring tremendous improvements to gas exploration, well operations, transport, and processing.
Natural gas — Upstream area — Determination of composition by Laser Raman spectroscopy

1 Scope

This document describes a laser Raman spectroscopy method for the quantitative determination of chemical composition of natural gas in upstream area within the ranges given in Table 1.

Table 1 — Natural gas components and range of composition covered

<table>
<thead>
<tr>
<th>Component</th>
<th>concentration (10^{-2} mol/mol)</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen</td>
<td>N_2</td>
<td>0.02</td>
<td>10</td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>CO_2</td>
<td>0.02</td>
<td>30</td>
</tr>
<tr>
<td>Hydrogen sulfide</td>
<td>H_2S</td>
<td>0.02</td>
<td>30</td>
</tr>
<tr>
<td>Methane</td>
<td>CH_4</td>
<td>0.02</td>
<td>100</td>
</tr>
<tr>
<td>Ethane</td>
<td>C_2H_6</td>
<td>0.02</td>
<td>20</td>
</tr>
<tr>
<td>Propane</td>
<td>C_3H_8</td>
<td>0.02</td>
<td>10</td>
</tr>
</tbody>
</table>

NOTE 1 The ranges in Table 1 do not indicate detection limits, but indicate that the specified precision can be achieved. The range can be wider when precision is not limited.

NOTE 2 Other gases such as H_2, i-C_4H_{10}, n-C_4H_{10} may also be desired. For some gas Raman technologies, multiple detector modules may be required.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 6142, Preparation of calibration gas mixtures Part 1: Gravimetric method

ISO 6144, Gas analysis — Preparation of calibration gas mixtures — Static volumetric method

ISO 6145, Gas analysis — Preparation of calibration gas mixtures using dynamic methods

ISO 10715, Natural gas — Sampling guidelines

ISO 11095, Linear calibration using reference materials

ISO 13443, Natural gas — Standard reference conditions

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at https://www.iso.org/obp

3.1 **Raman effect**
A process, in which photons from a light source are absorbed by the electrons surrounding polyatomic molecules and result in a new photons being emitted at wavelengths higher or lower than the source photon wavelength. The resulting wavelength changes are called Raman shifts. The Raman shifts are determined by the vibrational and rotational frequencies of the atomic bonds within each molecule.

3.2 **Multichannel photodetector**
A photosensitive semiconductor device that transports electric charge from one capacitor to another, allowing serial output of parallel data, typically used for digital image capture.

3.3 **Avalanche photodiode (APD)**
A diode with an internal gain mechanism, as in the case of standard diodes, photons generate electron-hole pairs, which are accelerated by the applied external voltage such that further electrons are introduced to the conduction band by means of impact ionization. These secondary electrons can in turn absorb sufficient energy to raise further electrons into the conduction band.

3.4 **Signal intensity**
The amount of Raman-shifted photons reaching the detection module.

3.5 **Raman spectrum**
A plot of signal intensity against Raman shift.

3.6 **External cavity**
Measuring gas with a spectrograph outside the laser.

3.7 **Intracavity**
Measuring gas inside the laser itself.

3.8 **Sulfur compound absorber**
A container filled with basic solution for extraction of sulphur compounds.

3.9 **Base span calibration**
Calibration process for eliminating cross-interference and Raman shift drift.

3.10 **Working span calibration**
Calibration process for calculation of the concentration of sample.

4 **Principle**

4.1 **Working principle of the laser Raman analyzer**
The sketch of the measuring principle is shown in Figure 1. Monochromatic (single wavelength) light from a laser goes through the sample, these source photons interact with the molecules of the gas sample via the Raman effect to emit photons at a different wavelengths. These Raman shifted photons are quantified by wavelength in a detection module. The detection module can be external cavity or intracavity type, using a spectrograph or discrete detectors.

In external cavity, a spectrograph directs photons of different wavelengths to different pixels on multichannel photodetector, it can be charge-coupled device (CCD), complementary metal oxide
semiconductor (CMOS) or other detectors. Each multichannel photodetector pixel stores the specific wavelength photons striking them, periodically creating digital signal intensity proportional to the number of photons collected. All pixels taken together generate a spectrum representing the number of photons detected at each wavelength. The spectrum can be mathematically processed to yield the molecular type and concentration in the gas sample.

In intracavity, a detector subsystem includes a focusing lens, an optical filter to select a specific Raman line and an APD or photomultiplier to capture the filtered light. The APD or photomultiplier separately collects and counts Raman photons emitted from individual gas species in millisecond time intervals. Gas concentrations are calculated for a specified period. Because each discrete detector collects photons at one wavelength, one detector position is typically needed to detect each natural gas species.

NOTE Currently, only analyzers with 8 APD detector positions per module are available. 8 is sufficient for some natural gas applications, however, if more than 8 gases need to be measured, two or more detectors can be operated in parallel.

Figure 1 — Working principle of the Laser Raman gas analyzer

4.2 Calculation

Because the gas concentration is directly and linearly proportional to the signal intensity expressed by photon counts, the concentration of components in the sample can be calculated by Formula (1):

\[
C_i = \frac{I_i}{I_{Ri}} \times C_{Ri}
\]

(1)

where

- \(C_i \) is the concentration of component \(i \) in the sample;
- \(I_i \) is the signal intensity of component \(i \) in the sample;
- \(I_{Ri} \) is the signal intensity of component \(i \) in the reference gas;
- \(C_{Ri} \) is the concentration of component \(i \) in the reference gas.
5 Instruments

5.1 Laser Raman gas analyzer

The type of Raman gas analyzer is selected according to the types of gases and the natural gas concentration ranges of interest. The base analyzer unit contains a laser, optical path control, gas detection chamber, photon detection and processing, signal processing, and human/machine interface. The analyzer should have sensitivity sufficient to detect the components in the analytical range given in Table 1. It should keep a stable state after zero calibration.

5.2 Laser specifications

The laser shall have a narrow-enough line width with a stable-enough power output and wavelength so as not to compromise the generation and analysis of the Raman spectra. Laser power should be high-enough to ensure sufficient sensitivity.

— laser wavelength should be in the range of 500 to 800 nm, and a laser of wave-length 785 nm is generally suggested;
— Laser wavelength stability, initially less than ±0.005 nm, less than ± 0.05 nm after 10,000 hours of operation;
— Laser power is typically 0.5 to 5.0 watts depending on Raman photon collection and detection efficiency;
— Laser power stability, short term (seconds) ± 0.5% average power, less than 20% after 10,000 hours of operation.

5.3 Detection module

The detection module should be capable of sufficient resolution, high throughput and stability.

5.4 Signal processing and user interface

Raman spectroscopy software is included as a part of the analyzer to process the detector data and provide a user interface. Software should be able to indicate gases measured, calculate the gas concentrations, track key diagnostic factors such as temperatures, spectral intensity, and laser power, and maintain and check instrument calibration and drift.

5.5 Sample filtration and Probe

Particulates and aerosols larger than 0.2 μm should be removed by filtration prior to entering the detector. The filter housing and sample probe shall be made of a material which is inert, non-adsorptive and non-permeable to components in the gas sample, stainless steel is preferred.

5.6 Gas pressure regulator

For sulfur-containing natural gas, hydrogen sulfide corrosion resistant gas pressure regulators should be selected.

5.7 Sulfur compound absorber

Beakerflask, flask etc. filled with basic solution can be used as sulfur compound absorber in order to eliminate sulfur compounds discharged to the atmosphere. Sodium hydroxide solution (200 g/L), prepared by dissolving sodium hydroxide (chemically pure) in water is suggested as the basic solution.