INTERNATIONAL STANDARD ISO 24061 First edition ## Ships and marine technology — High holding power balance anchors # iTeh STANDARD PREVIEW (standards.iteh.ai) ISO/PRF 24061 https://standards.iteh.ai/catalog/standards/sist/68e2a12a-c03e-4af1-91d2-0f62afadf7a0/iso-prf-24061 ## PROOF/ÉPREUVE Reference number ISO 24061:2021(E) ISO 24061:2021(E) # iTeh STANDARD PREVIEW (standards.iteh.ai) ISO/PRF 24061 https://standards.iteh.ai/catalog/standards/sist/68e2a12a-c03e-4af1-91d2-0f62afadf7a0/iso-prf-24061 #### **COPYRIGHT PROTECTED DOCUMENT** © ISO 2021 All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org ii Published in Switzerland | Co | ntents | Page | |------|---|---------------------------------| | Fore | eword | iv | | 1 | Scope | 1 | | 2 | Normative references | 1 | | 3 | Terms and definitions | 1 | | 4 | Design 4.1 Structure 4.2 Basic specifications and dimensions 4.3 Material | 1 | | 5 | Production 5.1 Visual appearance 5.2 Dimensional tolerance and geometrical tolerance 5.3 Welding and welding repair 5.4 Heat treatment 5.5 Non-destructive test 5.6 Painting 5.7 Mass 5.8 Balance | 2
3
4
4
4
4
5 | | 6 | Test methods 6.1 Drop test reh STANDARD PREVIEW 6.2 Proof test 6.3 Holding power test standards iteh ai | 5
6 | | 7 | Marking | | | 8 | Certificate ISO/PRF 24061 | 7 | | Ann | Certificate ISO/PRF 24061 https://standards.iteh.ai/catalog/standards/sist/68e2a12a-c03e-4af1-91d2- nex A (informative) Anchor structure and dimensions | 8 | | | nex B (normative) Anchor proof test method | | | | nex C (normative) Anchor holding power test method at sea | | | | liography | | #### Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html. (Standards.iteh.ai) This document was prepared by Technical Committee ISO/TC 8, *Ships and marine technology*, Subcommittee SC 4, *Outfitting and deck machinery*. O/PRF 24061 https://standards.iteh.ai/catalog/standards/sist/68e2a12a-c03e-4af1-91d2- Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html. ### Ships and marine technology — High holding power balance anchors #### 1 Scope This document specifies the design and production requirements, test methods, marking and inspection certificate for high holding power balance anchors (hereinafter referred to as anchors). It is applicable to the design, selection, production and acceptance of high holding power balance anchors. #### 2 Normative references The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 3828, Shipbuilding and marine structures — Deck machinery — Vocabulary and symbols ### 3 Terms and definitions TANDARD PREVIEW For the purposes of this document, the terms and definitions given in ISO 3828 and the following apply. ISO and IEC maintain terminological databases for use in standardization at the following addresses: - https://standards.iteh.ai/catalog/standards/sist/68e2a12a-c03e-4afl-91d2-— ISO Online browsing platform: available at https://www.iso.org/obp - IEC Electropedia: available at https://www.electropedia.org/ #### 3.1 ### high holding power balance anchor HHBP anchor anchor with a rotatory fluke that can be restored back to upright position by gravity once the anchor is hoisted from the sea bed, and with a holding power of at least twice that of an ordinary stockless anchor of the same mass #### 4 Design #### 4.1 Structure An anchor is generally composed of a shank, a fluke, a head pin, a lateral pin, a shackle and an anchor shackle. The typical structure is shown in <u>Annex A</u>. #### 4.2 Basic specifications and dimensions Anchors shall be designed as per the quantity required by outfitting. They shall be classified into different specifications based on the anchor theoretical mass. The corresponding basic dimensions are shown in <u>Table A.1</u>. © ISO 2021 – All rights reserved PROOF/ÉPREUVE 1 #### 4.3 Material **4.3.1** The chemical composition of the anchor components shall be as specified in <u>Table 1</u>. Table 1 — Chemical composition of anchor components Values in percent (%) | | Chemical element content ^{a)} | | | | | | | | | | |---------------------------------------|--|--------|------------------|-------|-------|--------------------------------|------|------|-------|------| | Component | C Si | C; | Mn ^{c)} | S | P | Residual element ^{b)} | | | | | | | | Mile 3 | 3 | | Ni | Cr | Cu | Мо | total | | | shackle body,
shank | 0,29 | 0,35 | 1,10 to
1,60 | 0,035 | 0,035 | - | - | - | - | - | | shank, fluke | 0,23 | 0,60 | 0,50 to
1,60 | 0,04 | 0,04 | 0,40 | 0,30 | 0,30 | 0,15 | 0,80 | | head pin, lateral
pin, shackle pin | 0,23 | 0,45 | 0,30 to
1,50 | 0,035 | 0,035 | 0,25 | 0,25 | 0,25 | 0,15 | 0,80 | a) All figures are maximum values, in %, except the ranges. **4.3.2** The mechanical properties of anchor components shall be as specified in <u>Table 2</u>. Table 2 — Mechanical properties of anchor components | | Mechanical property ^a | | | | | | | | | | |---------------------------------------|---------------------------------------|------------------------|--|---------------------------------------|---------------|--|--|--|--|--| | Component | Tensile strength
N/mm ² | ndards.hen.a/catalog/s | JPRExtension
tandpercentage 12a
7a0/iso-pt/24061 | Percentage of breaking area reduction | Impact energy | | | | | | | shackle body
shank | 490 | 295 | 22 | - | 27 | | | | | | | shank, fluke,
shank | 450 | 230 | 22 | 35 | 25 | | | | | | | head pin, lateral
pin, shackle pin | 410 | 245 | 25 | 35 | 27 | | | | | | | a) All figures are minimum values. | | | | | | | | | | | - **4.3.3** The surface and the inside of cast and forged components of anchors should be free from cracks, airholes, cratering, cold shuts, scabs and any other defects that may affect the strength. - **4.3.4** A Charpy V-notch impact test below 0 $^{\circ}$ C should be carried out regarding ice zone navigation requirements. The impact absorbing energy should not be less than 27 J. - **4.3.5** The welding material used during the fabrication of the anchor should be compatible with the parent material. #### 5 Production #### 5.1 Visual appearance Anchor rotary parts should be ground to Ra 25 μm and be able to flexibly rotate around the centre of gravity. The surface roughness of non-processed parts should be not more than Ra 100 μm . b) Unless required by the purchaser, the residual elements do not need to be analyzed. $^{^{\}rm c)}$ 0,04 % Mn may be added to the upper limit for each 0,01 % carbon reduction . #### 5.2 Dimensional tolerance and geometrical tolerance - **5.2.1** The permissible dimensional tolerance on each component of the anchor should be ± 4 %, and its maximum value shall not exceed ± 20 mm. - **5.2.2** The permissible tolerance between the swing angles of the anchor flukes should be $\pm 1^{\circ}$ respectively. - **5.2.3** The straightness deviation of the anchor shank should not be more than 3 mm for a length within 1 m. - **5.2.4** The anchor assembling tolerances should meet the following provisions. - a) Any side clearance between the shackle and the shank should be as specified in <u>Table 3</u>. Nominal mass of the anchor
tClearance value
mm ≤ 3 ≤ 3 >3 to ≤ 5 ≤ 4 >5 to ≤ 7 ≤ 6 $\Rightarrow 7eh$ STANDARD PREVIEW ≤ 12 Table 3 — Clearance between shackle and shank - b) When the diameter of the **shackle pin is less than or eq**ual to 57 mm, the diameter difference between the shackle pin and the shackle pin hole shall not be more than 0,5 mm. When the diameter of the shackle pin is more than 57 mm, the diameter difference between the shackle pin and the shackle pin hole should not be more than 1.0 mm. - c) The clearance difference between the pin, the shackle pin and the anchor shank hole should not be more than 1,0 mm. - d) The length of the head pin shall be able to prevent the longitudinal movement of the anchor. Its clearance shall be no more than $1\,\%$ of the pin slot length. - e) The lateral inclination of the anchor shank shall not exceed 3°. See Figure 1. Figure 1 — Lateral inclination of the anchor #### 5.3 Welding and welding repair Allowable defects should be repaired only after being evaluated through a qualified technical process. Stress relieving should be implemented. #### 5.4 Heat treatment The anchor shank, fluke and shackle should be treated with a normalizing and tempering process, with a tempering temperature of not less than $600\,^{\circ}$ C. #### 5.5 Non-destructive test The surface of cast and forged parts after machining shall be subject to a non-destructive test (NDT). The test for anchor cast components should be conducted in accordance with IACS REC. 69; the test for anchor forged parts should be conducted in accordance with IACS REC. 68. #### 5.6 Painting Anchors should be painted with 2 coats, of asphalt and black paint; other paints can be used if mutually agreed. #### **5.7** Mass The permissible deviation of the weighted mass relative to the nominal mass should be within 7% to -3%. #### 5.8 Balance The fluke should be able to be restored back to its upright position automatically when the anchor is fully hanged. The alignment of the two fluke bills should not exceed any lateral plane of the anchor shank. #### 6 Test methods #### 6.1 Drop test Anchors should be subject to a drop inspection, where the anchor is dropped from a height of 4,0 m; the anchor should be free from crack defects. The detailed procedures are as follows. - a) Being hung horizontally and vertically (head-down) respectively (see Figure 2), the shank and anchor fluke are dropped from a height of 4,0 m onto a steel lining (with a thickness of not less than 50 mm) fixed onto a solid foundation. - b) After the drop inspection, the anchor flukes and shank should be lifted off the ground with a non-metal rope and subject to a hammering test with a hammer weighing 3 kg to 7 kg. - c) Check whether the sound is clear or not. If there is any abnormal sound, they should be re-inspected with a NDT, and re-tested after defects repair. #### Key - 1 fluke - 2 shank - 3 steel foundation Figure 2 — Drop test #### 6.2 Proof test The proof test load for high holding power anchors shall be the load specified for the nominal anchor, the mass of which is 1,33 times the actual total mass of the high holding power anchor. Conduct a proof load test using the proof loads specified in <u>Table 4</u>. When the nominal mass lies between two values in the table, the proof test load should be determined by an interpolation method. The residual deformation after the test should not exceed 1 % of the gauge length, and the fluke should be able to rotate freely to $35^{\circ} \pm 1^{\circ}$. The roof test shall be conducted according to Annex B. Table 4 — Nominal mass and proof test load for anchor | Nominal
mass of
the anchor | Proof
test
load | |----------------------------------|-----------------------|----------------------------------|-------------------------|----------------------------------|-----------------------|----------------------------------|-----------------------| | kg | kN | kg | kN | kg | kN | kg | kN | | 50 | 23,2 | 1 200 | 231,0 | 4 800 | 645,0 | 1 100 0 | 1 070,0 | | 55 | 25,2 | 1 250 | 239,0 | 4 900 | 653,0 | 1 150 0 | 1 090,0 | | 60 | 27,1 | 1 300 | 247,0 | 5 000 | 661,0 | 1 200 0 | 1 110,0 | | 65 | 28,9 | 1 350 | 255,0 | 5 100 | 669,0 | 1 250 0 | 1 130,0 | | 70 | 30,7 | 1 400 | 262,0 | 5 200 | 677,0 | 1 300 0 | 1 160,0 | | 75 | 32,4 | 1 450 | 270,0 | 5 300 | 685,0 | 1 350 0 | 1 180,0 | | 80 | 33,9 | 1500 | 278,0 | ∆ 5400 D | 691,0 | 1 400 0 | 1 210,0 | | 90 | 36,3 | 1 600 | 292,0 | 5 500 | 699,0 | 1 450 0 | 1 230,0 | | 100 | 39,1 | 1 700 | (Sto7,0 Cla | rcs8dtel | 1.27 06,0 | 1 500 0 | 1 260,0 | | 120 | 44,3 | 1 800 | 321,0 | 5 700 | 712,0 | 1 550 0 | 1 270,0 | | 140 | 49,0 | 1 900 | 335,0 ISC | 7PRF 58001 | 721,0 | 1,600 0 | 1 300,0 | | 160 | 53,3 | 2 000 | 349.0
349.0
349.0 | 7a0/iso-pri-240 | 728,0 | 1 650 0 | 1 330,0 | | 180 | 57,4 | 2 100 | 362,0 | 6 000 | 735,0 | 1 700 0 | 1 360,0 | | 200 | 61,3 | 2 200 | 376,0 | 6 100 | 740,0 | 1 750 0 | 1 390,0 | | 225 | 65,8 | 2 300 | 388,0 | 6 200 | 747,0 | 1 800 0 | 1 410,0 | | 250 | 70,4 | 2 400 | 401,0 | 6 300 | 754,0 | 1 850 0 | 1 440,0 | | 275 | 74,9 | 2 500 | 414,0 | 6 400 | 760,0 | 1 900 0 | 1 470,0 | | 300 | 79,5 | 2 600 | 427,0 | 6 500 | 767,0 | 1 950 0 | 1 490,0 | | 325 | 84,1 | 2 700 | 438,0 | 6 600 | 773,0 | 2 000 0 | 1 520,0 | | 350 | 88,8 | 2 800 | 450,0 | 6 700 | 779,0 | 2 100 0 | 1 570,0 | | 375 | 93,4 | 2 900 | 462,0 | 6 800 | 786,0 | 2 200 0 | 1 620,0 | | 400 | 97,9 | 3 000 | 474,0 | 6 900 | 794,0 | 2 300 0 | 1 670,0 | | 425 | 103,0 | 3 100 | 484,0 | 7 000 | 804,0 | 2 400 0 | 1 720,0 | | 450 | 107,0 | 3 200 | 495,0 | 7 200 | 818,0 | 2 500 0 | 1 770,0 | | 475 | 112,0 | 3 300 | 506,0 | 7 400 | 832,0 | 2 600 0 | 1 800,0 | | 500 | 116,0 | 3 400 | 517,0 | 7 600 | 845,0 | 2 700 0 | 1 850,0 | | 550 | 125,0 | 3 500 | 528,0 | 7 800 | 861,0 | 2 800 0 | 1 900,0 | | 600 | 132,0 | 3 600 | 537,0 | 8 000 | 877,0 | 2 900 0 | 1 940,0 | | 650 | 140,0 | 3 700 | 547,0 | 8 200 | 892,0 | 3 000 0 | 1 990,0 | | 700 | 149,0 | 3 800 | 557,0 | 8 400 | 908,0 | 3 100 0 | 2 030,0 | | 750 | 158,0 | 3 900 | 567,0 | 8 600 | 922,0 | 3 200 0 | 2 070,0 | | 800 | 166,0 | 4 000 | 577,0 | 8 800 | 936,0 | 3 400 0 | 2 160,0 | | 850 | 175,0 | 4 100 | 586,0 | 9 000 | 949,0 | 3 600 0 | 2 250,0 | **Table 4** (continued) | Nominal
mass of
the anchor | Proof
test
load | |----------------------------------|-----------------------|----------------------------------|-----------------------|----------------------------------|-----------------------|----------------------------------|-----------------------| | kg | kN | kg | kN | kg | kN | kg | kN | | 900 | 182,0 | 4 200 | 595,0 | 9 200 | 961,0 | 3 800 0 | 2 330,0 | | 950 | 191,0 | 4 300 | 604,0 | 9 400 | 975,0 | 4 000 0 | 2 410,0 | | 1 000 | 199,0 | 4 400 | 613,0 | 9 600 | 987,0 | 4 200 0 | 2 490,0 | | 1 050 | 208,0 | 4 500 | 622,0 | 9 800 | 998,0 | 4 400 0 | 2 570,0 | | 1 100 | 216,0 | 4 600 | 631,0 | 1 000 0 | 1 010,0 | 4 600 0 | 2 650,0 | | 1 150 | 224,0 | 4 700 | 638,0 | 1 050 0 | 1 040,0 | 4 800 0 | 2 730,0 | Stress-bearing areas shall be checked after a pull force load test. #### 6.3 Holding power test A holding power test shall be carried out on three kinds of experimental ground, i.e. muddy ground, sandy ground and rocky ground, as specified in $\underline{\text{Annex C}}$. #### 7 Marking Qualified anchors shall be marked or branded on the shank and flukes with the following: - a) Class Society approved mark and certificate serial number - b) mass of the anchor; ISO/PRF 24061 c) HHBP mark for high/holding power balance anchors e2a12a-c03e-4af1-91d2-0f62afadf7a0/iso-prf-24061 #### 8 Certificate Qualified anchors should be provided with inspection certificates containing at least the following: - a) raw material quality certificate; - b) physical and chemical properties test report; - c) heat treatment record and NDT record; - d) drop tests report and proof testing report.