International Standard
 2785

Directives for selection of asbestos-cement pipes subject to external loads with or without internal pressure

Directives en vue du choix des tuyaux en amiante-ciment soumis à des charges extérieures avec ou sans pression intérieure

Second edition - 1986-07-01 h STANDARD PREVIEW (standards.iteh.ai)

ISO 2785:1986
https://standards.iteh.ai/catalog/standards/sist/33e1859c-3dfl-4778-bfd8-
800e93d7db3f/iso-2785-1986

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council. They are approved in accordance with ISO procedures requiring at least 75% approval by the member bodies voting.
bodies oring TANDARD PREVIEW

International Standard ISO 2785 was prepared by Technical Committee ISO/TC 77,
Products in fibre reinforced cement.

This second edition cancels and replaces the first edition (ISOL2785-1974), of which it constitutes a revision.
https://standards.iteh.ai/catalog/standards/sist/33e1859c-3dfl-4778-bfd8-800e93d7db3ffiso-2785-1986
Users should note that all International Standards undergo revision from time to time and that any reference made herein to any other International Standard implies its latest edition, unless otherwise stated.

[^0]Printed in Switzerland

Contents

Page
1 Scope and field of application 1
2 References 1
3 Symbols and abbreviations 1
4 Determination of external loads 3
4.1 Calculation of earth pressure 3
4.2 Calculation of vertical superimposed loads 11
(standairds.iteh.ai) 13
5 Bedding conditions, ring-bending moments 13
https://standards.iteh.ai/catalog/standards/sist/33e1859c-3dfl-4778-bfd8-
6 Safety factors so- 2785-1.986. 19
7 Procedure for selection of series of non-pressure sewerage and drainage pipe 19
8 Procedure for selection of pressure pipe 20
Annexes
A Earth-load coefficients C and C_{n} 22
B Truck-load coefficients C_{c} 24
C Examples of procedure for selection of sewerage and drainage pipes 28
D Examples of procedure for selection of pressure pipes 33
Bibliography 38

iTeh STANDARD PREVIEW
 (SFfnispage infentionatilylyertblank

ISO 2785:1986
https://standards.iteh.ai/catalog/standards/sist/33e1859c-3dfl-4778-bfd8-800e93d7db3f/iso-2785-1986

Directives for selection of asbestos-cement pipes subject to external loads with or without internal pressure

1 Scope and field of application

This International Standard gives rules for the selection of buried asbestos-cement pipes that are subject to external loads, with or without internal pressure.

It is based on the principles of calculation of external pressures due to earth and superimposed loads acting on buried pipes, considering the soil and pipe relative stiffnesses and their mechanical interaction.

These factors are applied to calculate the loads on asbestoscement pressure pipes, and on asbestos-cement sewerage and drainage pipes.
iTch STANDA
Standard pipe-laying and bedding conditions are considered as detailed in ISO 4482 and the corresponding maximum ringbending coefficients are fixed.

In applying this International Standard, numerical values for the specified parameters shall be selected. The pipe and soil parameters given have been established empirically so that calculated results are in close agreement with actual measurements. However, since in practice the exact values of these parameters are seldom known, it is the responsibility of the design engineer to select the most suitable values.

Safety factors against crushing of both pressure and nonpressure asbestos-cement pipes are recommended, and the procedure for choosing suitable pipes is described.

The safety factors for pressure pipes are established for combined stresses due to internal and external pressures without reducing the values given in ISO 160.

The steps in choosing suitable pipes are:
a) calculation of the total external load, including earthload, superimposed vertical loads and water-load (see clause 4);
b) selection of an appropriate bedding angle and the respective maximum ring-bending coefficient (see clause 5);
c) for sewerage or drainage pipes, selection of one of the corresponding classes from ISO 881, so that the necessary safety factor is fulfilled;
d) when pressure pipes are to be chosen, specification of the minimum required ultimate crushing load and bursting pressure. The pipes so chosen shall comply at least with the requirements of ISO 160.

NOTE - The detailed procedure of choosing the necessary pipes is given in clause 7 for sewerage and drainage pipes and in clause 8 for pressure pipes.

2 References

ISO 160, Asbestos-cement pressure pipes and joints.
ISO 881, Asbestos-cement pipes, joints and fittings for sewerage and drainage.

ISO 4482, Asbestos-cement pipelines - Guide for laying.

RD PREVIEW

S.i3e Symbols and abbreviations

A : width of uniform surcharge of small extent, in metres

rds/sist/33e1859c-3dfl-4778-bfd8-

$B \quad: \quad$ width of trench at the crown of the pipe, in metres
$B^{\prime} \quad:$ distance of the spring-line of a pipe from the wall of the trench in which it is buried, in metres
$b \quad:$ distance between two axles of a truck, in metres
c : diagonal distance between two wheels on two different axles of a truck, in metres
$C, C_{90} \quad$: earth-load coefficient for a trench with vertical walls
$C_{\mathrm{c}} \quad:$ load coefficient for superimposed concentrated moving loads
$C_{\mathrm{d}} \quad:$ load coefficient for distributed surcharges of small extent
$C_{\mathrm{n}} \quad:$ load coefficient for uniform surcharges of large extent
$c_{\mathrm{v}}, c_{\mathrm{v} 1}, c_{\mathrm{v} 2}$, : coefficients of vertical deformation of pipe $c_{\mathrm{v} 3}$
$c_{h}, c_{h 1}, c_{h 2}$: coefficients of horizontal deformation of pipe $c_{\text {h }}$

$x_{1}, x_{2}, x_{3}:$ auxiliary parameter defined in the text v
$\alpha \quad: \quad$ half the bedding angle of pipe
$\beta \quad:$ slope of the wall of the trench $\quad v_{z}$
$\gamma \quad: \quad$ specific weight of water, in kilonewtons per cubic metre
: deformation coefficient
: correction factor
: reduction factor of the resistance of the pipe to external load due to the action of internal pressure
$\eta_{z} \quad: \quad$ reduction factor of the resistance of the pipe to internal pressure due to the action of external load
: safety factor against crushing of a pipe loaded externally without internal pressure
$v_{d} \quad: \quad$ safety factor against crushing of a pipe when an internal hydraulic pressure is applied together with a ring-bending moment
safety factor against bursting of a pipe when a ring-bending moment is applied together with an internal hydraulic pressure
angle of internal friction of backfill soil
angle of friction between the backfill soil and the wall of the trench
impact factor

4 Determination of external loads

4.1 Calculation of earth pressure

The earth pressure on a pipe shall be calculated by the equations given in 4.1.1 to 4.1.3 appropriate to the following three types of pipe-laying conditions.

NOTE - Type 1 covers narrow trenches, wide trenches and positive projection embankment conditions.
Figure 1 - Type 1 of pipe-laying

Negative projection

NOTE - Type 2 covers negative projection conditions.
Figure 2 - Type 2 of pipe-laying

NOTE - Type 3: two or more pipelines in a single trench.
Figure 3 - Type 3 of pipe-laying

4.1.1 Type 1 of pipe-laying (see figure 1)

4.1.1.1 Vertical earth pressure

The magnitude of the vertical earth pressure in type 1 pipelaying conditions is given by the equation:

$$
q_{\mathrm{v} 1}=m C w H
$$

where
$q_{\mathrm{v} 1}$ is the vertical earth pressure on the pipe, in kilonewtons per square metre;

(Standlard ${ }_{\text {d }}^{\mathcal{E}} \mathbf{e}$ it it the base of natural logarithms; pipe, in metres;
K_{1} is the coefficient of lateral earth pressure above the Fevel of the crown of the pipe, according to the type of soil in this zone of backfill (see table 2);
ϱ^{\prime} is the friction angle between the backfill soil and the wall of the trench, depending on the angle of internal friction of the soil (see table 1), and method of backfilling and compacting (see table 3).

Table 1 - Properties of soils for calculating earth-load

Group of soil	Types of soil ${ }^{11}$	Unit weight, w $\mathrm{kN} / \mathrm{m}^{3}$	$\stackrel{\varrho}{\text { degrees }}$	Moduli of compression $E_{\mathrm{s}}{ }^{2}$) at following proctor standard densities (\%) achieved by self-consolidation or compaction $\mathrm{N} / \mathrm{mm}^{2}$					
				85	90	92	95	97	100
1	Non-cohesive	20	35	2,5	6	9	16	23	40
2	Slightly cohesive	20	30	1,2	3	4	8	11	20
3	Mixed cohesive	20	25	0,8	2	3	5	8	14
4	Cohesive	20	20	0,6	1,5	2	4	6	10

1) The four types of soil are:
non-cohesive: gravel, sand;
slightly cohesive: binding non-uniform sand or gravel;
mixed cohesive: rock flour, weathered rock soils, clayey sand;
cohesive: clay, silt, loam.
2) The moduli of compression E_{s} of the soils are measured by applying the CBR (California Bearing Ratio) method using a round plate of an area of $700 \mathrm{~cm}^{2}$.

The values of E_{s} are given by the expression

$$
E_{\mathrm{s}}=\frac{1,5}{\pi R}\left(\frac{F}{y}\right)
$$

where
R is the radius of the loading plate;
(F / y) is the slope of the load (F) settlement (y) curve obtained from the tests at the initial point, i.e. at $y=0$.

Table 2 - Coefficients of lateral earth pressures

Group of soil	K_{1}	K_{2}
1	0,5	0,4
2	0,5	0,3
3	0,5	0,2
4	0,5	0,1

NOTE $-K_{1}$ and K_{2} shall always be considered simultaneously.

Table 3 - Friction angles ϱ^{\prime} corresponding to several laying conditions

Case No.	Laying conditions	ϱ^{\prime}
1	Compaction of backfill according to the recommendations of ISO 4482. Unpro- tected trench walls or protected by withdrawable horizontal sheeting.	$\varrho^{\prime}=\varrho$
2	Compaction of backfill according to the recommendations of ISO 4482 in the pipe zone. Uncompacted backfill above the pipe zone, or hydraulic backfilling or sheet-pile protection of trench walls.	$\varrho^{\prime}=2 / 3 \varrho$
Trench wall protected by thick sheet piles or heavy planks, after their with- drawal.	$\varrho^{\prime}=0$	

NOTE - The value of ϱ^{\prime} should not exceed that of ϱ.
4.1.1.1.1 The influence of the slope of the trench wall
iTeh STANDARD PREVIEW

Figure 4 - Trench with sloping walls

At the same height of cover (H) and width (B) the vertical earth-load on a pipe is larger in a sloping-wall trench than in that with vertical walls. The slope of the walls, expressed by angle β, influences the value of the earth-load coefficient C as given by equations (4.03) and (4.04).

$$
\begin{align*}
& \text { For } 0 \leqslant \beta<\varrho: \quad C=1 \tag{4.03}\\
& \text { For } \varrho \leqslant \beta \leqslant 90^{\circ}: \quad C=1-\frac{\beta}{90}\left(1-C_{90}\right)
\end{align*}
$$

where
ϱ is the angle of internal friction of the backfill soil;
C_{90} is given by equation (4.02).
4.1.1.1.2 The distribution of the vertical earth pressure and reaction

Figure 5 - Distribution of earth pressures and reactions

Forthe calculation of ring-bending moments and deflections of the pipe, the vertical earth pressure is always assumed to be rectangularly distributed over its crown, as shown in figure 5. (The description of the various beddings is given in clause 5.)
where
$q_{\mathrm{h} 1}$ is the lateral earth pressure on the pipe, in kilonewtons per square metre;
$q_{\mathrm{hp} 1}$ is the maximum ordinate of the lateral soil reaction pressure, at the height of the pipe centre, in kilonewtons per
The distribution of the reaction depends on the pipe-soil system stiffness V_{ps} [see 4.1.4 and equation (4.22)]:
(standard ssouveremetrei)
Case 1: Pipe on soil-bedding and $V_{\mathrm{ps}} \leqslant 0,1$, according to figure 5a), i.e. vertically directed reaction, rec $-\mathrm{SO} 2785: n^{98}$ is the concentration factor of lateral earth pressure tangularly distributed over the full width D of pipe g/standard calculated in accordance with equation (4.12); regardless of the actual bedding angle. 800 e 93 d 7 db 3 ffiso

Case 2: Pipe on soil-bedding and $V_{\mathrm{ps}}>0,1$, according to figure 5b), i.e. vertically directed reaction, rectangularly distributed along the bedding angle 2α.

Case 3: In the case of rigid bedding (for example a concrete cradle) and when $V_{\mathrm{ps}}>0,1$, according to figure 5 c), i.e. radially directed and evenly distributed reaction along the bedding angle 2α.

4.1.1.2 Lateral earth pressure

The lateral earth pressure on the pipe is composed of the pressure q_{h} resulting from the vertical earth pressure and the lateral soil reaction q_{hp} due to deformation of the pipe.

The lateral earth pressure q_{h} is rectangularly distributed over the full height of the pipe in cases 1 and 2 [figures 5 a) and b)] and in case 3 [figure 5 c)] only above the rigid bedding.

The lateral soil reaction pressure q_{hp} is to be considered only in case 1 and as parabolically distributed along a central angle of 120° [figure 5a)].

The magnitudes of the two lateral earth pressures are given by the following equations:

$$
\begin{align*}
& q_{\mathrm{h} 1}=n K_{2} C w H \tag{4.05}\\
& q_{\mathrm{hp} 1}=\delta\left(q_{\mathrm{v} 1}-q_{\mathrm{h} 1}\right)
\end{align*}
$$

$K_{2}{ }^{8}$ is the coefficient of lateral earth pressure in the zone of the pipe, given in table 2 for different soils used in this zone;
δ is a deformation coefficient given by equation (4.21);
C, w, H are as defined in equation (4.01).

4.1.2 Type 2 of pipe-laying (see figure 2)

4.1.2.1 Vertical earth pressure

The magnitude of the vertical earth pressure in Type 2 of pipelaying conditions (negative projection) is given by the equation:

$$
\begin{equation*}
q_{\mathrm{v} 2}=m\left(C w_{1} H_{1}+C_{\mathrm{n}} w_{2} H_{2}\right) \tag{4.07}
\end{equation*}
$$

where
$q_{\mathrm{v} 2}$ is the vertical earth pressure on the pipe, in kilonewtons per square metre;
m, C, w, H are defined in equation (4.01);
indices 1 and 2 refer to the backfill below and above the level of the natural soil respectively (see figure 2);
C_{n} is given by equation (4.08) and in annex A :

$$
\begin{equation*}
C_{\mathrm{n}}=e^{-2\left(H_{1} / B\right) K_{1} \tan \varrho^{\prime}} \tag{4.08}
\end{equation*}
$$

$H, B, K_{1}, \varrho^{\prime}$ are defined in equation (4.02).
NOTE - If the trench has sloping walls (see figure 4), the coefficient C_{n} corresponding to a slope β should be corrected by applying equation (4.03) or (4.04).
4.1.2.2 Lateral earth pressure

The magnitudes of the two lateral pressures $-q_{\mathrm{h}}$ resulting from the vertical earth pressure and q_{hp} resulting from the deformation of the pipe - are given by the following equations:

$$
\begin{align*}
& q_{\mathrm{h} 2}=n K_{2}\left(C w_{1} H_{1}+C_{\mathrm{n}} w_{2} H_{2}\right) \tag{4.09}\\
& q_{\mathrm{hp} 2}=\delta\left(q_{\mathrm{v} 2}-q_{\mathrm{h} 2}\right) \tag{4.10}
\end{align*}
$$

where all the symbols are as defined for equations (4.05), (4.06), (4.07) and (4.08).

4.1.3 Type 3 of pipe-laying (see figure 3)

Two pipelines may be laid in a single trench either on the same level or on two different levels, as shown in figure 3.
The earth pressures on both pipes in figure 3a) and on the upper pipe in figure 3b) are calculated by equations (4.01), (4.05) and (4.06) considering for each pipe the corresponding value of backfill height H.

The earth pressures on the lower pipe in figure 3b) are calculated by equations (4.07), (4.09) and (4.10).
NOTES
1 The same procedure is applied if more than two pipes are laid in the same trench.
2 The procedure recommended in this clause may be applied only if the two (or more) pipelines are made of asbestos-cement.
3 When earth pressure on these pipes is calculated, the factor ζ should be calculated from equation (4.23a) and not read from figure 8 (see 4.1.4).

4.1.4 Soil-pipe stiffness ratio and earth pressure concentration factorsi)

The concentration factor m of vertical earth pressures is given by the following equation:

$$
\begin{equation*}
m=\frac{\left(m_{1}-\mathbf{1}\right)}{\mathbf{3}} \frac{\boldsymbol{B}}{\boldsymbol{D}}+\frac{\mathbf{4 - m _ { \boldsymbol { 1 } }}}{\mathbf{3}} \quad \text { for } \mathbf{1} \leqslant \frac{\boldsymbol{B}}{\boldsymbol{D}} \leqslant \mathbf{4} \text { - } 93 \mathrm{~d} / / \mathrm{db} 3 \mathrm{dtand} / \text { iso-2785-1986 } \tag{4.11a}
\end{equation*}
$$

or

$$
\begin{equation*}
m=m_{1}=\text { constant } \quad \text { for } 4<\frac{B}{D}<\infty \tag{4.11b}
\end{equation*}
$$

The concentration factor m shall not exceed the value $m_{\text {lim }}$ given by the following expression:

$$
\begin{equation*}
m_{\text {lim }}=1+4 K_{1} \tan \varrho \tag{4.11c}
\end{equation*}
$$

Figure 6 - Projection ratio p_{j} and pipe beddings

The concentration factor n of horizontal earth pressures is given by the following equation:

$$
\begin{equation*}
n=\frac{4-m_{1}}{3} \quad \text { for } 1<\frac{B}{D}<\infty \tag{4.12}
\end{equation*}
$$

In these equations:
B is the width of the trench at the crown of the pipe in metres;
D is the external diameter of the pipe, in metres;
K_{1} is taken from table 2;
$\varrho \quad$ is taken from table 1 ;
m_{1} is given by the following equations:

$$
\begin{align*}
& m_{1}=\frac{m_{\mathrm{m}} V_{\mathrm{s}}+\left(m_{\mathrm{m}}-1\right) m_{0} V_{\mathrm{s} 1} /\left(1-m_{0}\right)}{V_{\mathrm{s}}+\left(m_{\mathrm{m}}-1\right) V_{\mathrm{s} 1} /\left(1-m_{0}\right)} \tag{4.13}\\
& m_{0}=\frac{4 K_{2}}{3+K_{2}} \tag{4.14}
\end{align*}
$$

where K_{2} is taken from table 2,

$$
\begin{equation*}
V_{\mathrm{s} 1}=\frac{1-K_{2}}{1-\left(0,25 / p_{j}\right)} \tag{4.15}
\end{equation*}
$$

where K_{2} is taken from table 2 and p_{j} is defined infigure 6, NDARD PREW W
$V_{\mathrm{s}}=S_{\mathrm{p}} /\left|C_{\mathrm{v}}\right| S_{\mathrm{sv}}$ when lateral reaction pressure q_{hp} is considered .iteh.ai)
$V_{\mathrm{s}}=S_{\mathrm{p}} /\left|C_{\mathrm{v} v}\right| S_{\mathrm{sv}}$ when lateral reaction pressure q_{hp} is disregarded

In these three equations the various symbols are:
S_{p} is the stiffness of the pipe:

$$
\begin{equation*}
S_{\mathrm{p}}=\frac{E_{\mathrm{p}}}{12}\left(\frac{s}{r}\right)^{3} \tag{4.18}
\end{equation*}
$$

s is the wall thickness of the pipe, in metres;
r is the mean radius of the pipe, in metres:

$$
r=\frac{D-s}{2}
$$

D is the external diameter of the pipe in metres;
E_{p} is the modulus of elasticity of the pipe, in newtons per square millimetre; (for asbestos-cement pipes, assume $E_{\mathrm{p}}=25000 \mathrm{~N} / \mathrm{mm}^{2}$);
H is the height of backfill over the crown of the pipe, in metres;
S_{sv} is the vertical stiffness of the bedding;

$$
\begin{equation*}
S_{\mathrm{sv}}=E_{2} / p_{\mathrm{j}} \tag{4.19}
\end{equation*}
$$

p_{j} is the projection ratio from figure 6;
$\left|C_{\mathrm{v}}\right|$ is the absolute value of the factor of deformation of the vertical diameter $\left(\Delta D_{\mathrm{v}}\right)$:

$$
\begin{equation*}
C_{\mathrm{v}}=C_{\mathrm{v} 1}+C_{\mathrm{v} 3} \delta \tag{4.20}
\end{equation*}
$$

$C_{\mathrm{v} 1}$ is the factor of deformation ΔD_{v} due to q_{v} (see table 4);
$C_{\mathrm{v} 3}$ is the factor of deformation ΔD_{v} due to q_{hp} (see table 4);

$$
\begin{equation*}
\delta=C_{\mathrm{h} 1} /\left(V_{\mathrm{ps}}-C_{\mathrm{h} 3}\right) \tag{4.21}
\end{equation*}
$$

$C_{\mathrm{h} 1}$ is the factor of deformation ΔD_{h} due to q_{v} (see table 4);
$C_{\mathrm{h} 3}$ is the factor of deformation ΔD_{h} due to q_{hp} (see table 4);
V_{ps} is the pipe-soil system stiffness:

$$
\begin{equation*}
V_{\mathrm{ps}}=S_{\mathrm{p}} / S_{\mathrm{sh}} \tag{4.22}
\end{equation*}
$$

$S_{\text {sh }}$ is the horizontal stiffness of bedding:

$$
\begin{equation*}
S_{\mathrm{sh}}=0,6 \zeta E_{2} \tag{4.23}
\end{equation*}
$$

ζ is the correction factor calculated by the following expression or read from figure 8:

$$
\begin{equation*}
\zeta=\frac{1,662+0,639\left(\frac{B}{D}-1\right)}{\left(\frac{B}{D}-1\right)+\left[1,662-0,361\left(\frac{B}{D}-1\right)\right] \frac{E_{2}}{E_{3}}} \tag{4.23a}
\end{equation*}
$$

$E_{1}, E_{2}, E_{3}, E_{4}$ are the moduli of compression of the soil in different zones of backfill and trench (see figure 7), in newtons per square millimetre.

NOTE - Values of E_{1} and E_{2} can be taken from table 1 according to the compaction of the backfill. The values of E_{3} and E_{4} should be selected in accordance with the actual soil conditions. If E_{3} and E_{4} cannot be established, assume for usual soils $E_{3}=E_{2}$ and $E_{4}=E_{5}$ as given in table 1 at 100% proctor density.

Figure 7 - Moduli of soil compaction in different zones of the trench

[^0]: (c) International Organization for Standardization, 1986

