INTERNATIONAL STANDARD

First edition 2023-06

Rubber, vulcanized — Determination of the glass transition temperature and enthalpy by differential scanning calorimetry

Caoutchouc vulcanisé — Détermination de la température de transition vitreuse et de l'enthalpie par analyse calorimétrique différentielle

(standards.iteh.ai)

<u>ISO 24087:2023</u> https://standards.iteh.ai/catalog/standards/sist/c70261f4-590b-4f7c-a616-f33ed1449244/iso-24087-2023

Reference number ISO 24087:2023(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 24087:2023

https://standards.iteh.ai/catalog/standards/sist/c70261f4-590b-4f7c-a616-f33ed1449244/iso-24087-2023

COPYRIGHT PROTECTED DOCUMENT

© ISO 2023

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Page

Contents

Fore	word		iv
1	Scop	e	1
2	Norn	native references	1
3	Terms and definitions		
4		pols	
-			
5		ciple	
6	Арра	iratus and materials	4
7	Calib 7.1 7.2 7.3	ration General Temperature calibration Heat calibration	5 6
8	Test	portion	6
9	Cond	itioning	6
10	Procedure		
10	10.1	General	
		10.1.1 Switching on	
		10.1.2 Baseline determination	
		10.1.3 Test portion and crucible	
		10.1.4 Performing measurements	
	10.2	Determination of the glass transition temperature, T_{g}	
		10.2.1 Test performance	
	10.2	10.2.2 Use and expression of results	8
	10.3 Determination of the transition temperature and enthalpy of other thermal phenomena		8
		10.3.1 General	
		10.3.2 Test performance	
		10.3.3 Use and expression of results	
11	Prec	ision	
12		report	
		formative) Recommended calibration materials	
		formative) Precision	
	ىنىن سىمە		

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at <u>www.iso.org/patents</u>. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 45, *Rubber and rubber products*, Subcommittee SC 2, *Testing and analysis*.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

Rubber, vulcanized — Determination of the glass transition temperature and enthalpy by differential scanning calorimetry

WARNING — Persons using this document should be familiar with normal laboratory practice, if applicable. This document does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices.

1 Scope

This document specifies a method of thermal analysis of vulcanized rubber by differential scanning calorimetry (DSC). This method is intended for the observation and measurement of various properties and phenomena associated, such as physical transitions (glass transition, melting and crystallization, polymorphic transitions, etc.).

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 11357-1, Plastics — Differential scanning calorimetry (DSC) — Part 1: General principles

ISO 23529, Rubber — General procedures for preparing and conditioning test pieces for physical test methods tandards itch al/catalog/standards/sist/c7026114-590b-417c-a616-133ed1449244/iso-

24087-202

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 11357-1 and the following apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at <u>https://www.iso.org/obp</u>

— IEC Electropedia: available at <u>https://www.electropedia.org/</u>

3.1

glass transition temperature

temperature of change from a glassy or hard condition to a rubbery or viscous condition

3.2

melting

transition stage between a fully crystalline or partially crystalline solid state and an amorphous liquid of variable viscosity

Note 1 to entry: The transition, also referred to as "fusion", is characterized by an endothermic peak in the DSC curve (see Figure 1).

3.3

crystallization

transition stage between an amorphous liquid state and a fully crystalline or partially crystalline solid state

Note 1 to entry: The transition is characterized by an exothermic peak in the DSC curve (see Figure 1).

3.4

enthalpy of fusion

heat required to melt a material at constant pressure

Note 1 to entry: It is expressed in kilojoules per kilogram (kJ/kg) or joules per gram (J/g).

3.5

enthalpy of crystallization

heat released by the *crystallization* (3.3) of a material at constant pressure

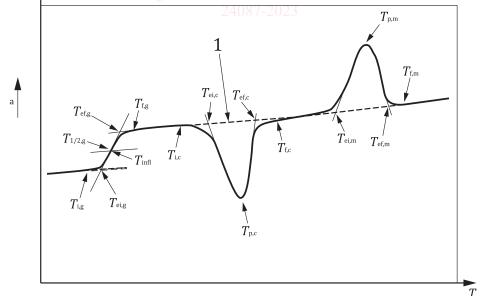
Note 1 to entry: It is expressed in kilojoules per kilogram (kJ/kg) or joules per gram (J/g).

3.6

reference crucible

crucible used on the reference side of the symmetrical crucible holder assembly

Note 1 to entry: Normally, the reference crucible is empty.


Note 2 to entry: This reference material should be thermally inactive over the temperature and time range of interest.

4 Symbols

(standards.iteh.ai)

A typical DSC curve, with conventional temperatures, is shown in <u>Figure 1</u> and explained in <u>Table 1</u>.

https:dQ/dt_ards.iteh.ai/catalog/standards/sist/c70261f4-590b-4f7c-a616-f33ed1449244/iso-

Key

dQ/dt heat flow rate

- T temperature
- *T*_i onset temperature

*T*_{ei} extrapolated onset temperature

 $T_{1/2,g}$ midpoint temperature

- $T_{\rm infl}$ point of inflection temperature
- *T*_p peak temperature
- *T*_{ef} extrapolated end temperature
- $T_{\rm f}$ end temperature
- 1 virtual baseline
- ^a Endothermic direction.

NOTE All these thermal phenomena are not necessarily present for all rubbers.

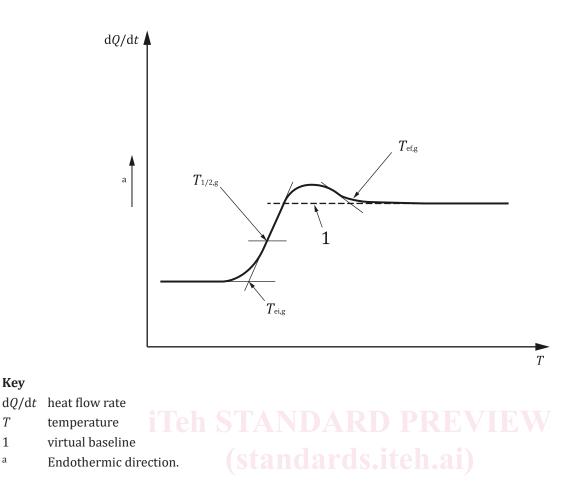

Figure 1 — Typical DSC curve

Table 1 — Symbols for conventionnal temperatures

Conventionnal temperatures		
The fi peak:	rst subscript, or pair of subscripts, denotes the position on the DSC curve with respect to the step or	
T _i	first detectable departure of DSC curve from extrapolated start baseline	
T _{ei}	(for a peak) point of intersection of virtual baseline and tangent drawn at point of inflection of near side of peak or (for a step) point of intersection of start baseline and tangent drawn at point of inflection of step (onset)	
$T_{1/2,g}$	half-height of a step	
<i>T</i> _{infl}	point of inflection (maximum of the first-derivative curve) in the range of transition	
	NOTE 1 For the purposes of this document, the glass transition temperature $T_{\rm g}$ corresponds to value of $T_{\rm infl}$	
T _p	greatest distance between DSC curve and virtual baseline during a peak	
T _{ef} https	(for a peak) point of intersection of interpolated virtual baseline and tangent drawn at point of inflection of far side of peak or (for a step) point of intersection of extrapolated end baseline and tangent drawn at point of inflection of step (offset)	
$T_{\rm f}$	last detectable deviation of DSC curve from extrapolated end baseline	
The second subscript indicates the type of transition:		
g	glass transition	
с	crystallization	
m	melting	

If a peak of internal relaxation appears on the high-temperature side of the glass-transition temperature, find the glass-transition end temperature ($T_{\rm ef,g}$) from the intersection of the two straight lines according to Figure 2.

One is a straight line that extends the high-temperature side baseline to the low-temperature side. The other is the tangent line drawn at the point where the slope of the curve on the hot side of the peak is maximum.

Figure 2 — Curve for the glass-transition temperature determination with enthalpy relaxation

5 **Principle**

Key

Т

1 а

The difference between the rate of heat flow into a specimen and that into a reference crucible is measured as a function of temperature and/or time while the specimen and the reference are subjected to the same temperature-control programme under a specified atmosphere.

Two types of DSC can be carried out: heat-flux DSC and power-compensation DSC.

- Heat-flux DSC: The specimen and reference positions are subjected to the same temperature-control programme by a single heater. A difference in temperature, ΔT , occurs between the specimen position and the reference position because of the difference in heat capacity between the specimen and the reference.
- Power-compensation DSC: The difference in electrical power required to maintain both the specimen position and the reference position at the same temperature is recorded against temperature or time, while each position is subjected to the same temperature-control programme;

Apparatus and materials 6

- **Differential scanning calorimeter**, with the following features. 6.1
- A symmetrical crucible holder assembly which has holders for the specimen and reference a) crucibles.
- The capability to generate heating and cooling rates between 0,5 K/min and 50 K/min. b)

- c) The capability to carry out step heating or step cooling.
- d) The capability to cool the target temperature for measuring the T_g of the sample.
- e) The capability to maintain a constant purge gas flow rate controllable to within 10 ml/min and 100 ml/min.
- f) The capability to measure temperature signals with a resolution of 0,1 °C and an accuracy of ±0,5 °C or better.
- g) For calibation and operation with a test portion of 1 mg minimum (or smaller quantities if required for specific applications).

6.2 Data acquisition and processing system.

6.3 Crucibles, for the specimen and reference positions.

They shall be of the same type, made of the same material and have similar masses (± 0.5 mg). They shall be physically and chemically inert to the specimen, the calibration materials and the purge gas under the measurement conditions (see <u>Table A.2</u>).

Crucibles should preferably be made of a material with a high thermal conductivity, for example, aluminium. Crucibles shall be closed with lids or hermetically sealed depinding on the measurement.

6.4 Crucibles setting press. ANDARD PREVIEW

6.5 Balance, capable of measuring the test portion mass with a resolution of 0,01 mg and an accuracy of ±0,1 mg or better.

6.6 Calibration materials (see <u>Table A.2</u> for examples).

https://standards.iteh.ai/catalog/standards/sist/c70261f4-590b-4f7c-a616-f33ed1449244/iso-

6.7 Gas supply, analytical grade, usually nitrogen or helium.

7 Calibration

7.1 General

Calibrate the calorimeter, both in energy and temperature, according to the manufacturer's instructions.

The calibration can be affected by the following:

- type of calorimeter used and its stability;
- type of purge gas used and its flow rate;
- type of crucible used, the crucible size and the positions of the crucibles in the crucible holder;
- mass and particle size of the test portion;
- heating and cooling rates;
- type of cooling system used;
- thermal contact between the specimen crucible and the crucible holder.

The conditions of the actual determination should therefore be defined as precisely as possible and the calibration carried out under these conditions as closely as possible. Computer-controlled DSC instruments can automatically correct for the effects of some of these sources of error.

7.2 Temperature calibration

The following procedure describes the minimum requirements for carrying out temperature calibration.

- weigh at least two calibration materials, indium and another material, covering the temperature range required;
- determine the transition temperatures for the calibration materials under the same conditions as those used with the test portion; the transition temperatures of the calibration materials being defined at the initial extrapolated temperature T_{ei} ;
- determine the temperature calibration function, either by comparing the nominal values with the recorded values or by entering the nominal values and the recorded values into a computer system associated with the calorimeter; in the last-mentioned case, the function is obtained automatically.

This calibration procedure is dependent on the heating rate and has to be performed for each heating rate. More frequent checks can be made if necessary. The repeatability of the temperature calibration shall be ± 0.5 °C.

7.3 Heat calibration

NOTE Refer to the manufacturer' recommendation to choose the calibration method.

The following procedure describes the minimum requirements for carrying out heat calibration.

- for heat calibration, the same measurements can be made as those made for temperature calibration;
- carry out a heating run with one material, preferably indium;
- examine the calibration material under the same conditions as those used with the test portion;
- record the curve corresponding to the transition heat of the calibration material as a function of temperature;
- determine the heat calibration function, either by comparing the nominal values with the recorded values or by entering the nominal value and the recorded values into a computer system associated with the calorimeter; in the last-mentioned case, the function is obtained automatically.

Heat calibration checks shall be carried out regularly. The repeatability of the heat calibration shall be ± 2 %.

8 Test portion

The test portion shall be representative of the sample being examined and shall be prepared and handled with care. If it has been cut from a sample, it will have at least one flat surface (to ensure good thermal contact) and be in one piece, if possible.

9 Conditioning

Condition the sample to be examined and the test portion in accordance with ISO 23529.