INTERNATIONAL ISO/IEC
STANDARD 30106-3

Second edition
2020-11

Information technology — Object
oriented BioAPI —

Part 3:
C# implementation

Technlogies de l'information — Objet orienté BioAPI —

Partie 33Mise.en oeuvre'de C#

Reference number
ISO/IEC 30106-3:2020(E)

© ISO/IEC 2020

ISO/IEC 30106-3:2020(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2020

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.

ISO copyright office

CP 401 e Ch. de Blandonnet 8

CH-1214 Vernier, Geneva

Phone: +41 22 749 01 11

Email: copyright@iso.org

Website: www.iso.org

Published in Switzerland

ii © ISO/IEC 2020 - All rights reserved

Contents

ISO/IEC 30106-3:2020(E)

Page
FOT@WOTIT ... vi
TN O@UICEION. ... vii
1 S0P ... 1
2 NOIIMATIVE FEERTEIICEScccooii et 1
3 Terms and defiNITIONIS ... 1
4 BioAPI C# Namespace Structure ..
4.1 Overall structure............ccooce...
4.2 Namespace BioAPL....cicss
4.2.1 NamMESPACE AESCIIPTION ..o
422 SEIUCEUTE ..o
4.3 Namespace BioAPIL.Data
4.3.1 NAMESPACE AESCIIPLION oo
4302 SEIUCTUT ..o
5 Data types and constants..........
5.1 Class ACBioParameters..
5.1.1 Description.........c.c....
5.1.2 PrOPEIrti€S SUIMIMATY ...oooicoiieoioieeiseeisieesseese e seee e e
5.2 Class BEPLISEEIRITIENTooccccoivvivriiesiiesieessesessieesssessssesssesses s
5.2.1 :Descriptiong:..A..
5.2.2 ‘Properties summary .. o
5.3 Class BFPSchema [Serializable ()]
5.3.1 Description
5.3.2 Properties summary..
5.3.3 Method SUMMa Y i ettt
5.4 Class' BIR 2 i nnts et eoe b At A ek oot e LR R R0
5.4.1 Description
542 PrOPEITIES SUIMNIMIATY ..o s e
54.3 METROA SUMIMATY ..o
5.5 Class BSPSchema [Serializable()]
551 Description. ...
5.5.2 Properties Summary.......
5.5.3 Method summary.....
5.6 Class Candidate..........ccccccnne.
157X 70 S D 1110 0 0) o 0O
5.6.2 PrOPEIties SUMIMATY ..ot
5.7 Class DataTypes ...
5.7.1 Description......
5.7.2 Enumerations...
5.8 Class Date......
5.8.1 Description......cc.....
5.8.2 PrOPerti€S SUIMIMATY ... oooieoriieeioiieisiieesieeseeesiess e
5.8.3 MethOdS SUMIMATY ...oooooieieieeieise e
59 Class FrameworkSchema
51001 DBSCTIPION e
5.9.2 PrOPEerties SUIMIMATY ...ttt
5.9.3 Method summary
5.10 Class GUIBitmap ...
5.10.T DS CIIPEION et
5,102 PIOPEITIES oot
5.10.3 Method summary
511 Class [dentifyPOPUIAtION. ...
S.1T0T DESCIIPION e

© ISO/IEC 2020 - All rights reserved iii

ISO/IEC 30106-3:2020(E)

5.11.2 Properties summary

5.11.3 Method summary ...
5.12 Class PopulationMember ...

5.12.1 DBSCIIPION e

5.12.2 Properties summary
5.13 Class RegistrylD

5.13.1 Description

5.13.2 Properties summary
5.14 Class SecurityProfileType

5.14.1 Description......ccsircsi

5.14.2 Properties summary

5.14.3 MethOd SUMIMATY w..ooccoeeieie oo
5.15 C(lass UnitList

5151 DBSCTIPEION e

5.15.2 Properties summary

5.15.3 Methods summary...........c.c.

5.16 Class UnitListElement.......ccn.

5.16.1 Description

5.16.2 Properties summary
5.17 Class UnitSchema.........ccoe

5,171 DBSCIIPION e

5.17.2 Properties summary

5.17.3 Method summary
5.18 Class UUID [Serializable()]

5.18.1 Description:

5182 PIOPEITIES oo g g
Object oriented interfaces for supporting BioOAPT_UNits ©. ./, 22
6.1 General
6.2 Interface TATChIVE ... i e

6.2.1 Description! a0 Va8 A A I s eSO e A oSS

6.2.2 Method summary
6.3 Interface IComparison

6.3.1 Description

6.3.2 Method summary
6.4 Interface IProcessing........cc

6.4, 1 DESCIIPEION. .ot

6.4.2 Method summary
6.5 Interface ISENSOT ...

6.5.1 Description. ...

6.5.2 Method summary
BEFP LEVEL ..ot
7.1 INEEITACE IBFP ..o

7.1.1 Description

7.1.2 IMPOTtEd INEEITACES ..ot 33

7.1.3 PrOPerties SUIMIMIATY ... siiseosissesesiesees s sisss s 33

7.1.4 Events summary.............

7.1.5 Method summary
BSP LEVEL ...
8.1 INEETEACE IBSP ...t

811 DIESCIIPTION e

8.1.2 Imported interfaces.........c......

8.1.3 Properties summary

8.1.4 Events summary.............

8.1.5 MEthOd SUMIMATY ..o
FrameEeWOTK LEVEL ... 43
9.1 Interface [COMPONENTREGISTIY ... 43

© ISO/IEC 2020 - All rights reserved

ISO/IEC 30106-3:2020(E)

9.1.1 Description........

9.1.2 Method summary
9.2 Interface IFramework..........

O.2. 1 DIOSCIIPTION e

0.2.2 INherited INEEITACES ...

9.2.3 Properties summary

0.2.4 MEthOA SUIMIMATY ..o

10 APPLCAtION INEEIACKION......... e

10.1 class BioAPIException : Exception

10.1.1 DeSCription....ccocscsssesecss

10.1.2 Constructor SUMMary ...

10.1.3 PrOPEITIeS SUIIMIATY ...ooooiciiieioiiiiieiesieeeiesesissesosseissesss s

10.1.4 MeThOd SUMIMIATTY w..ooooiiiieiieeie s
10.2 Callback functions..........ccccc.....

10.2.1 Description
10.2.2 Callback functions specification

Annex A (informative) Calling sequence examples and sample code ... 57

BIDLEOZTAPIY 58

© ISO/IEC 2020 - All rights reserved v

ISO/IEC 30106-3:2020(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that
are members of ISO or IEC participate in the development of International Standards through
technical committees established by the respective organization to deal with particular fields of
technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other
international organizations, governmental and non-governmental, in liaison with ISO and IEC, also
take part in the work.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for
the different types of document should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent
rights. Details of any patent rights identified during the development of the document will be in the
Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents) or the IEC
list of patent declarations received (see http://patents.iec.ch).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation of the voliintdary‘natureof/standards, theé neaning of1SO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principlessin the Technical/Barriens/to Trade (TBT), see www.iso.org/
iso/foreword.html.

This document was prepared by Joint Technlcal Committee<ISO/IEC JTC 1, Information technology,
Subcommittee SC 37, Biometrics.

This second edition cancels and replaces the first edition (ISO/IEC 30106-3:2016), which has been
technically revised.

The main changes compared to the previous edition are as follows:

— correction of typing errors;

— addition of AnalyseQuality method.

Alist of all parts in the ISO/IEC 30106 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.

vi © ISO/IEC 2020 - All rights reserved

ISO/IEC 30106-3:2020(E)

Introduction

This document specifies an application programming interface expressed in C# language. C# is intended
to be a simple, general-purpose, object-oriented programming language that is aimed at enabling
programmers to quickly build a wide range of applications for the Microsoft.NET platform.

One of the advantages of using C# is that, as it is designed for the CLI (Common Language Infrastructure),
it allows multiple high-level languages to be used on different computer platforms without being
rewritten for specific architectures.

C# shares some features (overloading, some syntactic details) with C++ but also includes new
characteristics (reference and output parameters, enumerations, unified type system). Furthermore,
C# is very similar to Java (interfaces, exceptions, object-orientation), which implies that the structure of
interfaces and namespaces (which is the equivalent to packages in Java language) is mostly the same as
Java but, as expected, code implementation and compilation are different.

As Java implementation allows an easy use of Java BSPs, Java-based application servers or Java applets,
C# is the best way to write windows desktop and web applications/services and provides an advanced
and well-designed remote framework.

© ISO/IEC 2020 - All rights reserved vii

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/MEC 30106-3:2020
https/standards.iteh.ai/catalog/standards/sist/7e 1444af-d82 1-44b3-b66f
589dd516d051/iso-iec-30106-3-2020

INTERNATIONAL STANDARD ISO/IEC 30106-3:2020(E)

Information technology — Object oriented BioAPI —

Part 3:
C# implementation

1 Scope

This document specifies an interface of a BioAPI C# framework and BioAPI C# BSP which mirror the
corresponding components specified in ISO/IEC 30106-1. The semantic equivalence of this document
will be maintained with ISO/IEC 30106-2 (Java implementation). In spite of the differences in actual
parameters passed between functions, the names and interface structure are the same.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 10646:2017, Information technology,—+ Universalb Coded Chardacter Set (UCS)
ISO/IEC 30106-1, Information technology —+.Object.otiented BioAPI — Part 1: Architecture

3 Terms and definitions
No terms and definitions are listed:in thisdocument
ISO and [EC maintain terminological databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at https://www.iso.org/obp

— IEC Electropedia: available at http://www.electropedia.org/

4 BioAPI C# Namespace Structure

4.1 Overall structure
The BioAPI C# interface is divided into several namespaces. The following is the namespace structure:

— Namespace BioAPI: Contains functionality to manage units, BSPs, BFPs, the Framework and
Applications.

— Namespace BioAPI.Data: Contains all the data structures.
4.2 Namespace BioAPI

4.2.1 Namespace description

This namespace contains all the components responsible for managing and executing the functionality
of BioAPI. Component Registry interface is also defined in this namespace.

© ISO/IEC 2020 - All rights reserved 1

ISO/IEC 30106-3:2020(E)

4.2.2 Structure

The description of this namespace is given explaining a bottom-up structure. In Clause 6, the interfaces
needed to be implemented for each of the Unit types are explained. It is important to note that such
interfaces do not refer to an implemented class by itself, as the accessible class will be either the
Biometric Service Provider (BSP) or the Biometric Function Provider (BFP), but the specifications in
this clause are common to the methods and properties to be added to the implemented BSP and/or BFP
classes.

This will be followed by the specification of the implementation of the BFP (Clause 7) and BSP (Clause 8)
interfaces. These two interfaces provide the lower layer interoperability level, equivalent to the SPI and
BFPI interfaces in ISO/IEC 19784-1.

The higher layer of interoperability level is provided by the specification of the Framework (Clause 9,
with the Framework Interface and the Component Registry) and the Application interaction (Clause 10,
with the specification of the Exceptions and Callback functions). This provides the equivalence to the
APl interface in ISO/IEC 19784-1.

4.3 Namespace BioAPI.Data

4.3.1 Namespace description

This namespace contains all data structures needed for the implementation of 00 BioAPI.

4.3.2 Structure

Several data structures are provided to comply withithesrequirgments of specifying this document. All
the BioAPIl.Data namespace are specified in Clause 5, where all needed classes and enumerations are
defined. This has to be complemented to the constants defined. in ISO/IEC 30106-1.

5 Data types and constants
5.1 Class ACBioParameters

5.1.1 Description

Provides the information which is used to generate ACBio instances.

5.1.2 Properties summary

— int[] Challenge {get;} - Challenge from the validator of a biometric verification when ACBio is
used. This value shall be sent to the field controlValue of type ACBioContentInformation in ACBio
instances.

— int[] InitialBPUIOIndexOutput {get;} - The initial value of BPU 10 index which is to be assigned to the
output from the BioAPI Unit, BFP, or BSP when the ACBio instances are generated. The range between
InitialBPUIOIndexOutput and SupremumBPUIOIndexOutput shall be divided into the number of BSP
Units and BFPs which are accepted by the BSP, and assigned to the BSP Units and BSPs.

— int[] SupremumBPUIOIndexOutput {get;} — The supremum of BPU 10 indexes which are to be
assigned to the output from the BioAPI Unit, BFP, or BSP when the ACBio instances are generated.

2 © ISO/IEC 2020 - All rights reserved

ISO/IEC 30106-3:2020(E)

5.2 C(Class BFPListElement

5.2.1 Description

Identifies a BFP by category and UUID. A list is returned by a BSP when queried for the installed BFPs
that it supports.

5.2.2 Properties summary
— UnitCategoryType UnitCategory { get; set; }: The category of the unit.
— UUID BFPID { get; set; }: The UUID assigned to the BFP.

5.3 Class BFPSchema [Serializable()]

5.3.1 Description

Represents the record in the component registry that defines the properties of the BFP installed in the
system. s a serializable class.

5.3.2 Properties summary

— UUID BFPUUID {get;}: UUID of the BFP.

— UnitCategoryType!BFRCategory {get;}: Category of the BFP identified by the BFPUUID.

— String BFPDescription {get;}: AINULL-teriminated string/containing a text description of the BFP.

— String Path {get;}: A pointer to a NULL-terminated string containing the path of the file containing
the BFP executable code, including the filename. The path may be a URL. This string shall consist of
ISO/IEC 10646 characters encoded in UTF-8.(see ISO/IEC 10646:2017, Annex D). When BFPSchema
is used within a function call, the component that receives the call allocates the memory for the Path
schema element and the calling component frees the memory.

— String SpecVersion {get;}: Major/minor version number of the BioAPI specification to which the BFP
was implemented.

— String ProductVersion {get;}: The version string of the BFP software.
— String Vendor {get;}: A NULL-terminated string containing the name of the BFP vendor.
— sbyte[] BFPProperty {get;}

— List<RegistrylD> BFPSupportedFormats {get;}: A list of the data formats that are supported by the
BFP (see 7.1).

— List<BiometricType> FactorsMask {get;}: A list of the biometric types supported by the BFP (see 7.1).
— UUID FwPropertyID {get;}: UUID of the format of the following BFP property.

— byte[] FwProperty {get;}: Address and length of a memory buffer containing the BFP property. The
format and content of the BFP property can either be specified by a vendor or can be specified in a
related standard.

© ISO/IEC 2020 - All rights reserved 3

ISO/IEC 30106-3:2020(E)

5.3.3 Method summary

5.3.3.1 virtual void Dispose ()

Description:|Removes all the information in the current object, leaving it empty for a next use.
Exception:|None.

5.4 C(Class BIR

5.4.1 Description

This interface represents BIRs (Biometric Information Records). It supports the ISO/IEC 19785 series
definitions, both for Simple-BIRs or for Complex-BIRs. The specification of the patron format that shall
be used is given in ISO/IEC 30106-1.

5.4.2 Properties summary

NOTE The description of each of the properties can be found in ISO/IEC 19785-1.
— RegistryID SelfID { get; set; } (see 5.13).

— byte CBEFFVersion { get; set; }.

— byte PatronHeaderVersion{ get; set; }-

— RegistrylD BDBFormat { get; set; } (see 5.13).

— bool BDBEncription { get; set; }.

— bool BIRIntegrity { get; set; }. »

— BiometricType BDBBiometricType { get; set; } (see 5.7.2.2).

— BiometricSubtype BDBBiometricSubtype { get; set; } (see 5.7.2.1).
— RegistryID BDBCaptureDevice { get; set; } (see 5.13).

— RegistryID BDBFeatureExtractionAlg { get; set; } (see 5.13).
— RegistrylD BDBComparisonAlg { get; set; } (see 5.13).

— RegistrylD BDBCompresionAlg { get; set; } (see 5.13).

— RegistrylD BDBPADTechnique { get; set; } (see 5.13).

— byte[] BDBChallengeResponse { get; set; }.

— Date BDBCreationDate { get; set; } (see 5.8).

— byte[] BDBIndex { get; set; }.

— ProcessedLevel BDBProcessedLevel { get; set; }.

— RegistrylD BDBProduct { get; set; } (see 5.13).

— Purpose BDBPurpose { get; set; }.

— byte BDBQuality { get; set; }.

— RegistrylD BDBQualityAlg { get; set; } (see 5.13).

— List<Date> BDBValidityPeriod { get; set; } // 2 dates (see 5.8).

4 © ISO/IEC 2020 - All rights reserved

]
byte[]
]

5.4.3

5.4.3.1

ISO/IEC 30106-3:2020(E)

Date BIRCreationDate { get; set; } (see 5.8).

byte[] BIRCreator { get; set; }.

BIRIndex { get; set; }.

byte[] BIRPayload { get; set; }.

byte[] BIRPointer { get; set; }.

List<Date> BIRValidityPeriod { get; set; } // 2 dates (see 5.8).
RegistryID SBFormat { get; set; } (see 5.13).

byte[] BDBData { get; set; }.

byte[] SBData { get; set; }.

Method summary

virtual BIR (byte[] record)

Description:

Constructs the BIR data from a byte array coded as a self-identifying record, as
indicated in the relevant clauses of ISO/IEC 19785-3 and ISO/IEC 19785-4.

Parameters:

— record: The byte array containing the CBEFF record.

Exception:

Ifthe'input parameters are‘invalid, the formatis not supported or operation fails
due to error, BioAPIException (see, 10.1).

5.4.3.2

virtual BIR (RegistrylD bDBFormat, bool bDBEncription, bool bIRIntegrity,

BiometricType bDBBiometricType, BiometricSubtype bDBBiometricSubtype, RegistrylD
bDBCaptureDevice, RegistryID bDBFeatureExtractionAlg, RegistryID bDBComparisonAlg,
RegistryID bDBCompresionAlg, RegistrylD bDBPADTechnique, byte[] bDBChallengeResponse, Date
bDBCreationDate, byte[] bDBIndex, ProcessedLevel bDBProcessedLevel, RegistryID bDBProduct,
Purpose bDBPurpose, byte bDBQuality, RegistrylD bDBQualityAlg, List<Date> bDBValidityPeriod,
Date bIRCreationDate, byte[] bIRCreator, byte[] bIRIndex, byte[] bIRPayload, byte[] bIRPointer,
List<Date> bIRValidityPeriod, RegistrylD sBFormat, byte[] bDBData, byte[] sBData)

Description:

Constructs the BIR data from its individual components.

Parameters:

— Each of the properties in the BIR class.

Ex ion:

If the input parameters are invalid, the format is not supported or operation fails
due to error, BioAPIException (see 10.1).

5.4.3.3

virtual public byte[] ToArray()

Description:

Serializes a BIR record so as to provide it as a byte array representing the CBEFF
information.

Return Value:

The byte array containing the CBEFF information.

Exception:

[f the input parameters are invalid, the format is not supported or operation fails
due to error, BioAPIException (see 10.1).

© ISO/IEC 2020 - All rights reserved

ISO/IEC 30106-3:2020(E)

5.4.3.4 virtual void Dispose ()

Description:|Removes all the information in the current BIR, leaving it empty for a next use.

Exception:|None.

5.5 Class BSPSchema [Serializable()]

5.5.1 Description

Represents the record in the component registry that defines the properties of the BSP installed in the
system. Is a serializable class.

5.5.2 Properties Summary

UUID BSPUUID {get;}.
String BSPDescription {get;}: A NULL-terminated string containing a text description of the BSP.

String Path {get;}: A pointer to a NULL-terminated string containing the path of the file containing
the BSP executable code, including the filename. The path may be a URL. This string shall consist of
ISO/IEC 10646 characters encoded in UTF-8 (see ISO/IEC 10646:2017, Annex D). When BioAPI_BSP_
SCHEMA is used within a function call, the component that receives the call allocates the memory
for the Path schema element and the calling component frees the memory.

String SpecVersion {get;}:"Major/minor version'number-of the BioAPI specification to which the BSP
was implemented.

String ProductVersion {get;}: The version string of the BSP software.
String Vendor {get;}: ANULL-terminated string containing the name of the BSP vendor.

List<RegistrylD> BSPSupportedFormats {get;}:'A’'list the data formats that are supported by the
BSP (see 5.13).

List<BiometricType> FactorsMask {get;}: A list of the biometric types supported by the BSP (see
5.7.2.2).

List<BSPSchemaOperations> Operations {get;}: A list of the biometric operations supported by the
BSP (see 5.7.2.4).

List<BSPSchemaOptions> Options {get;}: A list of the biometric options supported by the BSP (see
5.7.2.5).

int AdditionalDataPolicy {get;}: Threshold setting (maximum FMR value) used to determine when
to release additionalData after successful verification.

int MaxAdditionalDataSize {get;}: Maximum additionalData size (in bytes) that the BSP can accept.

int DefaultVerifyTimeout {get;}: Default timeout value in milliseconds used by the BSP for Verify
operations when no timeout is specified by the application.

int DefaultldentifyTimeout {get;}: Default timeout value in milliseconds used by the BSP for Identify
and BioAPI_IldentifyMatch operations when no timeout is specified by the application.

int DefaultCaptureTimeout {get;}: Default timeout value in milliseconds used by the BSP for Capture
operations when no timeout is specified by the application.

int DefaultEnrolTimeout {get;}: Default timeout value in milliseconds used by the BSP for Enrol
operations when no timeout is specified by the application.

© ISO/IEC 2020 - All rights reserved

ISO/IEC 30106-3:2020(E)

— int DefaultCalibrateTimeout {get;}: Default timeout value in milliseconds used by the BSP for sensor
calibration operations when no timeout is specified by the application.

— int MaxBSPDbSize {get;}: Maximum size of a BSP-controlled BIR database. It applies only when a BSP
is only capable of directly managing a single archive unit. A value of zero means that no information
about the database size is being provided for one of the following three reasons:

a) databases are not supported;

b) itis capable of managing multiple units (either directly or through a BFP interface), each of
which may have a different maximum size and information about these units will be
provided as part of the insert notification (part of Unit Schema); or

c) onearchive unitis supported, but the information is not given here - it will be provided in the
insert notification.

— int Maxldentify {get;}: Largest population supported by the identify function. Unlimited =
OxFFFFFFFF.

— int MaxNumEnrollnstances {get;}: The maximum number of distinct instances for which a BSP can
create reference templates in one enrol operation. This information can be useful to an application
that uses the application-controlled GUI feature.

— byte[] HostingEndpointIRI{get;}: An IRl identifying the framework for which the componentregistry
contains a registration of the BSP. This parameter shall be ignored by frameworks conforming to
this part of this International Standard.and shall be set to NULL by.an application. It is provided to
support interworking'standards,'which may specify the use of'identical BSPs present on multiple
computers from within an applicationyrunning on the same or a different computer.

— UUID BSPAccessUUID {get;}: AUUID, unique within the scope of an application, which the application
may use to refer to the BSP as ancalternative-tothe BSP product UUID. This parameter shall be
ignored by frameworkscenforming te this partofthis/International-Standard and can be set to any
UUID value by an applicatiomdtissprovided te support interworking standards, which may specify
the use of identical BSPs present on multiple computers from within an application running on the
same or a different computer.

NOTE The "BSPAccess_UUID" and the "HostingendpointIRI" are part of the definition of the C type
BioAPI_BSP_SCHEMA, but are not part of the BSP schema information stored in the component registry (see
ISO/IEC 19784-1).

— List<RegistryID> BSPSupportedAlgorithms {get;}: array of BioAPI_ALGORITHM_ID structures
specifying the supported algorithms.

— List< UUID> BSPSupportedTransformOperations {get;}: array of BioAPI_UUID structures specifying
the transform operations supported within the BioAPI_Tranform operation.

5.5.3 Method summary

5.5.3.1 virtual void Dispose ()

Description: |Removes all the information in the current object, leaving it empty for a next use.
Exception:|None.

5.6 C(Class Candidate

5.6.1 Description

Defines each of the resulting candidates from the Identify functionality.

© ISO/IEC 2020 - All rights reserved 7

	jgÇõ†‘{'ÅìcPÊÍÑÞU�°ºþ£$ÑfQLV<‰T	`^4‡@½Ê*’PÖˇrÆµt��_Ïªéà4‚g*–ö}Ñ¥‡Øø`�¬ÁF£�q�è[ﬁ¯w¼�…¿êFd

