FINAL DRAFT

TECHNICAL SPECIFICATION

ISO/DTS 24137

ISO/TC 123/SC 7

Secretariat: **JISC**

Voting begins on: 2022-11-22

Voting terminates on: 2023-01-17

Plain bearings — Surface modification by press fitting solid lubricants combined with micro dimple processing

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO/TS 24137</u>

https://standards.iteh.ai/catalog/standards/sist/d30022e9-a3cb-4080-aaf6-483ffccabd0c/iso-ts-24137

RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT, WITH THEIR COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE AND TO PROVIDE SUPPORTING DOCUMENTATION.

IN ADDITION TO THEIR EVALUATION AS BEING ACCEPTABLE FOR INDUSTRIAL, TECHNO-LOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT INTERNATIONAL STANDARDS MAY ON OCCASION HAVE TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL TO BECOME STAN-DARDS TO WHICH REFERENCE MAY BE MADE IN NATIONAL REGULATIONS.

Reference number ISO/DTS 24137:2022(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO/TS 24137</u>

https://standards.iteh.ai/catalog/standards/sist/d30022e9-a3cb-4080-aaf6-483ffccabd0c/isots-24137

COPYRIGHT PROTECTED DOCUMENT

© ISO 2022

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Page

Contents

Forev	word		iv		
Intro	ductio	n	v		
1	Scope				
2	Normative references				
3	Terms and definitions				
4	Structure				
5	Mate 5.1 5.2	rials Target materials Solid lubricants	2		
6	Proc 6.1 6.2 6.3 6.4	ess General Formation of dimples 6.2.1 General 6.2.2 Shot peening 6.2.3 Interrupted micro cutting Supply of solid lubricant Press fitting of solid lubricant	2 3 3 3 4 5		
Anne	x A (in	formative) Test results	7		
Bibli	ograph	y(standards itch ai)			

(standards.iteh.ai)

ISO/TS 24137

https://standards.iteh.ai/catalog/standards/sist/d30022e9-a3cb-4080-aaf6-483ffccabd0c/isots-24137

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 123, *Plain bearings*, Subcommittee SC 7, *Special types of plain bearings*.

<u>ISO/TS 24137</u>

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

Introduction

As a general surface modification method, heat treatment such as carburizing or nitriding, hard film coating by chemical vapour deposition (CVD) or physical vapour deposition (PVD), solid lubricant coating using a resin binder, etc. are used. However, these conventional surface modification methods have problems such as the need for a special device, insufficient adhesion strength of the coating film, etc. Therefore, the purpose of this document is to provide a method for forming a lubricating film firmly bonded to the base metal by a simple method.

This document specifies surface modification method by a combination of processes capable of quickly processing with general purpose equipment in order to obtain excellent friction characteristics by a method excellent in mass production.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/TS 24137

https://standards.iteh.ai/catalog/standards/sist/d30022e9-a3cb-4080-aaf6-483ffccabd0c/iso-ts-24137

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/TS 24137

https://standards.iteh.ai/catalog/standards/sist/d30022e9-a3cb-4080-aaf6-483ffccabd0c/isots-24137

Plain bearings — Surface modification by press fitting solid lubricants combined with micro dimple processing

1 Scope

This document specifies the method of surface modification that improves the friction characteristics of plain bearings, by press fitting a solid lubricant onto the bearing metal surface mechanically in combination with processing a lot of micro dimples on the surface.

2 Normative references

There are no normative references in this document.

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at <u>https://www.iso.org/obp</u>
- IEC Electropedia: available at https://www.electropedia.org/

3.1

hybrid media

ISO/TS 24137

shot media having a surface modifying material attached to the media surface

Note 1 to entry: A shot media coated by carbon black is described in <u>A.2</u> as an example of hybrid media.

3.2

Almen strip

rectangular metal strip used for evaluating the shot peening intensity

3.3

arc height

height of the arched deformation of an Almen strip

Note 1 to entry: An arc height shows the intensity of the shot peening and is expressed in millimetres.

4 Structure

The structure of the surface modified layer obtained by the surface modification method specified in this document is shown in Figure 1. The thickness of the surface modified layer is several micro meters. Dimensions such as the thickness of the surface modified layer and the diameter/depth/area ratio of dimples are determined by the application and its operating conditions.

Key

- 1 modified layer
- 2 target material
- *h* thickness of the surface modified layer

Figure 1 — Structure of surface modified layer

5 Materials

5.1 Target materials

The materials to be surface-modified by the method specified in this document shall be metal materials. In particular, materials having high work hardening property are suitable. Typical such materials include steel, aluminium alloy, titanium alloy, etc.

5.2 Solid lubricants

Typical solid lubricants used for the surface modification specified in this document are molybdenum disulfide, graphite, carbon black, etc. <u>Table 1</u> shows a typical combination of solid lubricant and target material with their applications. catalog/standards/sist/d30022e9-a3cb-4080-aaf6-483ffccabd0c/iso-

Table 1 — Typical combination of solid lubricant and target materi	al and their annlications
Tuble 1 Typical combination of some rubi leant and target mater	and then applications

Solid lubricant	Target material	Application
Molybdenum disulfide	Steel, Aluminium alloy, etc.	High load, vacuum
Graphite	Steel, etc.	High temperature
Carbon black	Steel, Titanium alloy, etc.	Dry condition, low humidity

6 Process

6.1 General

The surface modification process specified in this document should be based on a combination of formation of dimples on the surface, supply of solid lubricant to the surface and press fitting of solid lubricant to the surface. General process steps of surface modification are shown in Figure 2.

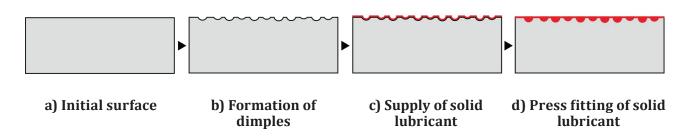
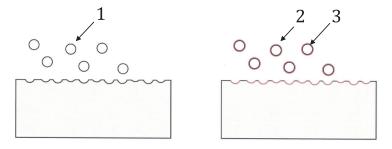


Figure 2 — General process steps of surface modification

Examples of friction test results of samples obtained by the surface modification method specified in this document is shown in <u>Annex A</u>.

6.2 Formation of dimples


6.2.1 General

Typical examples of the method of dimple formation are described below. However, the method is not limited to them. Other methods can be used if the required dimples are obtained.

6.2.2 Shot peening h STANDARD PREVIEW

Shot peening, by applying out at high speed media (hard particles) nearly spherical surface of the material, is a cold working method for work hardening the target material surface by providing compressive residual stress. By this method, fatigue strength and stress corrosion cracking resistance can be improved. In the surface modification of bearings specified in this document, it is mainly used as a pre-treatment before "press fitting" the solid lubricants on the surface. By using hybrid media having a surface modifying material attached to the media surface, it is possible to adhere the modifying material to the target material surface simultaneously with formation of dimples. In this case, the dimple formation process, the solid lubricant supplying process and part of the press fitting process specified in this document are done simultaneously.

A schematic diagram of surface modification by shot peening process is shown in Figure 3.

Key

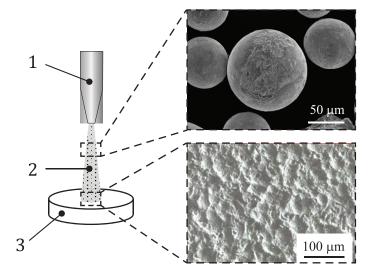

- 1 raw shot media
- 2 hybrid shot media
- 3 surface modifying material attached to the media surface

Figure 3 — Formation of dimples by shot peening process

Because of its aim for formation of dimples, unlike in the case of shot peening for the purpose of general surface hardening, the diameter of media should be about five times the expected dimple diameter and the hardness should be about 70 % as compared with the target material. A projection flow rate of

about 5 g/s and a projection pressure of about 0,3 MPa are suitable. It is recommended to measure the arc height beforehand using Almen strips in order to evaluate the shot peening conditions. A schematic diagram of the shot peening process is shown in Figure 4.

General shot peening procedures and conditions are defined in ISO 12686 and ISO 26910-1.

Кеу

- 1 nozzle
- 2 compressed gas containing shot media ANDARD PREVIEW
- 3 target material

standards.iteh.ai)

NOTE The upper photo is the enlarged view of shot media and the lower photo is the enlarged view of the shot peened surface of the target material.

<u>ISO/TS 24137</u>

https://standards.iteh.ai/ Figure 4 — Shot peening process b-4080-aaf6-483ffccabd0c/iso-

6.2.3 Interrupted micro cutting

Like shot peening, interrupted micro cutting is a processing method for making dimples on the surface. Since cutting is performed with a rotating tool, it is useful when processing dimple with pattern property. An arbitrary pattern can be generated by controlling the combination of the shape of the cutting edge, the feed speed, and the rotation speed. The feature of this processing method is that it can control the pitch, size and depth of the dimple, so that it is superior in terms of homogeneity of the surface properties. It is also suitable for processing in places where shot peening processing is difficult, such as the inside of a cylinder. A schematic diagram of the interrupted micro cutting process is shown in Figure 5.

	4	/
a		\backslash
		Y
$\langle \circ \circ \rangle$	The second secon	

a) View of cutting tool (left) and enlarged view of cutting tip part (right)

b) Explanatory diagram of micro cutting process by spoon-shaped cutting edge

- ^a Feed direction of tool.
- ^b Rotational direction of tool.

Figure 5 — Interrupted micro cutting process

6.3 Supply of solid lubricant NDARD PREVIEW

Supply of solid lubricant to the dimple-formed surface should be performed as follows.

Solid lubricant particles are suspended in a solvent such as ethyl alcohol (ethanol), terpineol, etc. and the suspended solid lubricant particles are sprayed or painted to the dimple-formed surface. The solvent is then volatilized to coat the surface with solid lubricant particles.

https://standards.iteh.ai/catalog/standards/sist/d30022e9-a3cb-4080-aaf6-483ffccabd0c/iso-

However, the method is not limited to them. Other methods can be used if the required coating of the solid lubricant is obtained.

WARNING — Cleaning fluids are volatile and flammable. Care shall be taken for the Global Harmonized System of Classification and Labelling of Chemicals (GHS) hazard pictograms.

6.4 Press fitting of solid lubricant

Roller burnishing is a processing method in which a tool having a hard surface such as a metal roller is rotated while pressing against a material to smooth the surface. In the surface modification of bearings specified in this document, it is used as a processing method for press fitting a solid lubricant onto the surface, and shot peening should be used as a pre-treatment thereof.

It is necessary to adjust the pressing force of the roller on the target material. It is recommended that the contact surface pressure is 1,5 GPa to 2,5 GPa for applying to aluminium alloy, steel and titanium alloy. Plateau of the surface after burnishing should be as desirably smooth as possible. A schematic diagram of the roller burnishing process is shown in Figure 6.

Methods other than roller burnishing can also be used if the required surface is obtained, that is, a method which can smooth the target surface and press fit the solid lubricant onto the surface.