FINAL DRAFT

INTERNATIONAL STANDARD

ISO/FDIS 16190

ISO/TC 216

Secretariat: UNE

Voting begins on: **2021-08-11**

Voting terminates on: **2021-10-06**

Footwear — Critical substances potentially present in footwear and footwear components — Test method to quantitatively determine polycyclic aromatic hydrocarbons (PAHs) in footwear materials

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/FDIS 16190 https://standards.iteh.ai/catalog/standards/sist/21024cc5-b510-48ef-841f-241a1c340654/iso-fdis-16190

RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT, WITH THEIR COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE AND TO PROVIDE SUPPORTING DOCUMENTATION.

IN ADDITION TO THEIR EVALUATION AS BEING ACCEPTABLE FOR INDUSTRIAL, TECHNOLOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT INTERNATIONAL STANDARDS MAY ON OCCASION HAVE TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL TO BECOME STANDARDS TO WHICH REFERENCE MAY BE MADE IN NATIONAL REGULATIONS.

ISO/CEN PARALLEL PROCESSING

Reference number ISO/FDIS 16190:2021(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/FDIS 16190 https://standards.iteh.ai/catalog/standards/sist/21024cc5-b510-48ef-841f-241a1c340654/iso-fdis-16190

COPYRIGHT PROTECTED DOCUMENT

© ISO 2021

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Cor	ntents	Page			
Fore	word	iv			
Intro	oduction	v			
1	Scope	1			
2	Normative references	1			
3	Terms and definitions				
4	Principle				
5	Reagents				
6	Apparatus				
7	Sample preparation				
8	Procedure				
J	8.1 Extraction GDES 1				
	8.2 Optional: Solid-phase extraction (SPE) clean-up	6			
9	Expression of results				
	9.1 Determination of the PAK content				
	9.1.1 For each PAH				
	9.1.2 When a sum of PAHs is requested. 9.2 Performance of the test method	6			
10	Test report (standards.iteh.ai)	7			
Anne	ex A (informative) Examples of chromatographic conditions for GC-MS and GC-MS/MS				
Bibli	iography https://standards.iteh.ai/catalog/standards/sixt/21024cc5-b510-48ef-841f-	11			
	241a1c340654/iso-fdis-16190				

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html. (Standards.iteh.ai)

This document was prepared by Technical Committee ISO/TC 216, *Footwear*, in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 309, *Footwear*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

This first edition cancels and replaces the first edition Technical Specification (ISO/TS 16190:2013), which has been technically revised. The main changes compared with the previous edition are as follows:

- the Introduction has been added;
- a note has been added to the Scope;
- the Normative references have been updated;
- the clauses have been renumbered and technical changes have been made throughout;
- Annex A has been added.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

Certain polycyclic aromatic hydrocarbons (PAHs) have been identified as carcinogenic. Thus, several countries have restricted them in articles such as footwear, e.g. in the European Union by Commission Regulation (EU) $2018/1513^{[1]}$ amending Regulation (EC) No $1907/2006^{[2]}$.

Restricted PAHs according to Regulation (EC) No 1907/2006 are Benzo[a]pyrene (BaP), Benzo[e]pyrene (BeP), Benzo[a]anthracene (BaA), Chrysene (CHR), Benzo[b]fluoranthene (BbFA), Benzo[j]fluoranthene (BjFA), (g) Benzo[k]fluoranthene (BkFA) and Dibenzo[a,h]anthracene (DBAhA).

Further PAHs are restricted by footwear brands in their restricted substances lists (RSLs).

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/FDIS 16190 https://standards.iteh.ai/catalog/standards/sist/21024cc5-b510-48ef-841f-241a1c340654/iso-fdis-16190

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/FDIS 16190 https://standards.iteh.ai/catalog/standards/sist/21024cc5-b510-48ef-841f-241a1c340654/iso-fdis-16190

Footwear — Critical substances potentially present in footwear and footwear components — Test method to quantitatively determine polycyclic aromatic hydrocarbons (PAHs) in footwear materials

WARNING — The use of this document involves hazardous materials. It does not purport to address all of the safety or environmental problems associated with its use. It is the responsibility of users of this document to take appropriate measures to ensure the safety and health of personnel and the environment prior to the application of this document, and to fulfil the relevant requirements for this purpose.

1 Scope

This document specifies a method to determine the amounts of polycyclic aromatic hydrocarbons (PAHs) in footwear and footwear components.

NOTE A list of relevant materials can be found in ISO/TR 16178:2012, Table 1[3].

2 Normative references TANDARD PREVIEW

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 4787, Laboratory glassware — volcataloc/standards/sixt/21024cc5 b510 48 cf. 841 ft and for use

3 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at http://www.electropedia.org/

4 Principle

The test sample is extracted using toluene at 60 °C in an ultrasonic bath for 1 h. An aliquot is then analysed using a gas chromatograph with mass selective detector.

5 Reagents

WARNING — Toluene is flammable. In addition, PAHs can cause cancer. Therefore, they should be treated taking into account relevant regulations on occupational health and safety.

Unless otherwise specified, analytical grade chemicals shall be used.

- **5.1 Toluene,** CAS Registry Number®¹⁾ 108-88-3.
- **5.2 PAHs.** The 24 PAHs given in <u>Table 1</u> may be relevant.

Table 1 — List of relevant PAHs

Component	CAS Registry Number® ¹⁾
Naphthalene	91-20-3
Acenaphthylene	208-96-8
Acenaphthene	83-32-9
Fluorene	86-73-7
Anthracene	120-12-7
Phenanthrene	85-01-8
Fluoranthene	206-44-0
Pyrene	129-00-0
1-methylpyrene	2381-21-7
Cyclopenta(c,d)pyrene	27208-37-3
Benzo[a]anthracene	56-55-3
Chrysene	218-01-9
Benzo[b]fluoranthene	205-99-2
Benzo[j]fluoranthene STAND	205-82-3 PREVIEW
Benzo(k)fluoranthene	207-08-9
Benzo[a]pyrene	50-32-8
Benzo[e]pyrene	192-97-2
Benzo[ghi]perylene	191-24-2 angards/sist/21024cc5-b510-48ef-841f-
	193 4 3 94 5 is-16190
Dibenzo(a,h)anthracene	53-70-3
Dibenzo[a,l]pyrene	191-30-0
Dibenzo[a,e]pyrene	192-65-4
Dibenzo[a,i]pyrene	189-55-9
Dibenzo[a,h]pyrene	189-64-0

5.3 PAH standard solution(s) (100 μg/ml)

Based on its tasks, a laboratory shall decide which PAHs from Table 1 need to be determined. Based on this decision, standard stock solutions for each PAH (c = $100 \mu g/ml$ for each PAH) shall be available either as commercially available certified mixes or as individual components in solution.

5.4 Target PAHs — Stock solution 1 (5 μg/ml)

Put 9 ml of toluene (5.1) in a 10 ml amber volumetric flask (6.6), add 500 μ l of PAH stock solution (5.3) and fill the flask up to the calibration mark with toluene (5.1).

5.5 Target PAHs — Stock solution 2 (0,5 μg/ml)

Put 8 ml of toluene (5.1) in a 10 ml amber volumetric flask (6.6), add 1 ml of stock solution 1 (5.4) and fill the flask up to the calibration mark with toluene (5.1).

¹⁾ CAS Registry Number® (CAS RN®) is a trademark of CAS corporation. This information is given for the convenience of users of this document and does not constitute an endorsement by ISO of the product named. Equivalent products may be used if they can be shown to lead to the same results.

5.6 Internal standards (IS) solution(s) (100 μg/ml)

5.6.1 General

The following IS shall be used either as commercially available certified mixes or as individual components in solution.

- **5.6.1.1** Naphthalene-d8, CAS RN®¹⁾ 1146-65-2.
- **5.6.1.2 Fluorene-d10**, CAS RN®¹⁾ 81103-79-9.
- **5.6.1.3 Pyrene-d10**, CAS RN®¹⁾ 1718-52-1.
- **5.6.1.4** Chrysene-d12, CAS RN®¹⁾ 1719-03-5.
- **5.6.1.5 Benzo[a]pyrene-d12**, CAS RN®¹⁾ 63466-71-7.
- **5.6.1.6** Benzo[ghi]perylene-d12, CAS RN®¹⁾ 93951-66-7.
- **5.6.1.7 Dibenzo[a,h]anthracene-d14** CAS RN®¹⁾ 13250-98-1.

5.6.2 Correspondence between PAH and IS PREVIEW

Use the IS for the determination of the corresponding PAH according to <u>Table 2</u>. The number of IS can be reduced at least to five if method validation demonstrates sufficient recovery rates for the corresponding PAH^[Z].

ISO/FDIS 16190

https://starTable 2 ai/c List of relevant internal standards

CAS RN®1) Component Internal standard Naphthalene-d8 (5.6.1.1) Naphthalene 91-20-3 208-96-8 Acenaphthylene Pyrene-d10 (<u>5.6.1.3</u>) 83-32-9 Acenaphthene Pyrene-d10 (<u>5.6.1.3</u>) Fluorene 86-73-7 Fluorene-d10 (<u>5.6.1.2</u>) 120-12-7 Anthracene Pyrene-d10 (5.6.1.3) Phenanthrene 85-01-8 Pyrene-d10 (5.6.1.3) Fluoranthene 206-44-0 Pyrene-d10 (<u>5.6.1.3</u>) Pvrene 129-00-0 Pyrene-d10 (5.6.1.3) 1-methylpyrene 2381-21-7 Pyrene-d10 (5.6.1.3) Benzo[a]anthracene 56-55-3 Chrysene-d12 (<u>5.6.1.4</u>) Chrysene 218-01-9 Chrysene-d12 (<u>5.6.1.4</u>) Cyclopenta(c,d)pyrene 27208-37-3 Benzo[a]pyrene-d12 (<u>5.6.1.5</u>) Benzo[b]fluoranthene 205-99-2 Benzo[a]pyrene-d12 (<u>5.6.1.5</u>) Benzo[j]fluoranthene 205-82-3 Benzo[a]pyrene- d12 (<u>5.6.1.5</u>) 207-08-9 Benzo(k)fluoranthene Benzo[a]pyrene- d12 (5.6.1.5) Benzo[a]pyrene 50-32-8 Benzo[a]pyrene- d12 (<u>5.6.1.5</u>) Benzo[e]pyrene 192-97-2 Benzo[a]pyrene- d12 (<u>5.6.1.5</u>) Benzo[ghi]perylene 191-24-2 Benzo[ghi]perylene- d12 (5.6.1.6) Indeno[1,2,3-cd]pyrene 193-39-5 Benzo[ghi]perylene- d12 (<u>5.6.1.6</u>) Dibenzo(a,h)anthracene 53-70-3 Dibenzo[a,h]anthracene-d14 (5.6.1.7)

Table 2 (continued)

Component	CAS RN® ¹⁾	Internal standard
Dibenzo[a,l]pyrene	191-30-0	Dibenzo[a,h]anthracene- d14 (5.6.1.7)
Dibenzo[a,e]pyrene	192-65-4	Dibenzo[a,h]anthracene- d14 (<u>5.6.1.7</u>)
Dibenzo[a,i]pyrene	189-55-9	Dibenzo[a,h]anthracene- d14 (<u>5.6.1.7</u>)
Dibenzo[a,h]pyrene	189-64-0	Dibenzo[a,h]anthracene-d14

5.6.3 Internal standard — Stock solution (each 100 µg/ml)

Internal standards are commercially available as certified solutions, or solutions of certified individual compounds may be prepared.

To prepare an internal standard solution, use the analytical balance (6.1) and weigh 10 mg, with an accuracy of 0,1 mg, of each selected internal standard (5.6.1) into 100 ml amber volumetric flasks and fill it up to the mark with toluene (5.1).

5.6.4 Internal standard — Working solution (5 µg/ml)

Transfer 0,5 ml of each internal standard stock solution (5.6.3) to a 10 ml amber volumetric flask and fill it up to the mark with toluene (5.1).

5.7 Target PAHs — Calibration solutions

Prepare at least four calibration solutions of PAHs (see Table 3), including internal standard, in toluene, at suitable concentrations for the analysis. Put the required volume of PAH standard stock solution(s) (5.3) and $100 \mu l$ of internal standard working solution(s) (5.6.4) into a 10 ml amber volumetric flask (6.6) and fill it up to the mark with toluene (5.1).

https://standards.iteh.ai/catalog/standards/sist/21024cc5-b510-48ef-841f-Table 3 — Preparation of calibration standards suitable for GC-MS (example)

Calibration solution PAH concentration	Calibration solution IS concentration	Volume of PAH working solution $c = 5 \mu g/ml$ (5.4)	Volume of PAH working solution 2 c = 0.5 µg/ml	Volume of IS working solution $c = 5 \mu g/ml$ (5.6.4)	Volume of volumetric flask (6.6)
(µg/ml)	(μg/ml)	(µl)	(<u>5.5</u>) (μl)	(µl)	(ml)
0,005			1 000		
0,025	0.050	50		100	10
0,100	0,050	200		100	10
0,500		1 000			

5.8 Extraction solution with internal standard (0,050 µg/ml)

Prepare the extraction solution with an internal standard concentration of 0,050 μ g/ml by diluting internal standard stock solution (5.6.2) with toluene (5.1) in a suitable volumetric flask. The solution shall be stored in an amber bottle in the dark. Exposure to direct sun irradiation shall be avoided. The solution is stable for seven days.

5.9 Preservation

All PAH standard solutions (5.3), (5.4), (5.5) and internal standard solutions (5.6.2), (5.6.3) shall be stored in amber glassware in a refrigerator, at about (5 \pm 3) °C and preserved in the dark.