

SLOVENSKI STANDARD oSIST prEN IEC 61675-2:2024

01-julij-2024

Naprave za opazovanje radioaktivnih elementov - Karakteristike in preskusni pogoji - 2. del: Gama kamere za planarno slikanje, slikanje celega telesa in slikanje SPECT

Radionuclide imaging devices - Characteristics and test conditions - Part 2: Gamma cameras for planar, wholebody, and SPECT imaging

Bildgebende Systeme in der Nuklearmedizin - Merkmale und Prüfbedingungen - Teil 2: Gammakameras für planare Bildgebung, mit Ganzkörper-Zusatz und Gammakameras zur Einzelphotonen-Emissions-Tomographie (SPECT)

Dispositifs d'imagerie par radionucléides - Caractéristiques et conditions d'essai - Partie 2: Gamma-caméras pour l'imagerie planaire, l'imagerie du corps entier et l'imagerie spect

SIST prEN IEC 61675-2:2024

ttps://standards.iteh.ai/catalog/standards/sist/9d8b9f71-8c35-4b92-8f24-96cbee63d283/osist-pren-iec-61675-2-2024 Ta slovenski standard je istoveten z: prEN IEC 61675-2:2024

en

ICS:

11.040.50 Radiografska oprema

Radiographic equipment

oSIST prEN IEC 61675-2:2024

oSIST prEN IEC 61675-2:2024

iTeh Standards (https://standards.iteh.ai) Document Preview

o<u>SIST prEN IEC 61675-2:2024</u> https://standards.iteh.ai/catalog/standards/sist/9d8b9f71-8c35-4b92-8f24-96cbee63d283/osist-pren-iec-61675-2-2024

62C/912/CDV

COMMITTEE DRAFT FOR VOTE (CDV)

PROJECT NUMBER:			
IEC 61675-2 ED3			
DATE OF CIRCULATION:	CLOSING DATE FOR VOTING:		
2024-03-31	2024-00-23		
SUPERSEDES DOCUMENTS:			
62C/871/CD, 62C/889A/CC			

IEC SC 62C : EQUIPMENT FOR RADIOTHERAPY, NUCLEAR MEDICINE AND RADIATION DOSIMETRY				
Secretariat:	Secretary:			
Germany	Ms Regina Geierhofer			
OF INTEREST TO THE FOLLOWING COMMITTEES:	PROPOSED HORIZONTAL STANDARD:			
	Other TC/SCs are requested to indicate their interest, if any, in this CDV to the secretary.			
FUNCTIONS CONCERNED:				
EMC ENVIRONMENT	Quality assurance Safety			
	NOT SUBMITTED FOR CENELEC PARALLEL VOTING			
Attention IEC-CENELEC parallel voting The attention of IEC National Committees, members of CENELEC, is drawn to the fact that this Committee Draft for Vote (CDV) is submitted for parallel voting.				
The CENELEC members are invited to vote through the CENELEC online voting system.	EC 61675-2:2024			

This document is still under study and subject to change. It should not be used for reference purposes.

Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Recipients of this document are invited to submit, with their comments, notification of any relevant "In Some Countries" clauses to be included should this proposal proceed. Recipients are reminded that the CDV stage is the final stage for submitting ISC clauses. (SEE AC/22/2007 OR NEW GUIDANCE DOC).

TITLE:

Radionuclide imaging devices - Characteristics and test conditions - Part 2: Gamma cameras for planar, wholebody, and SPECT imaging

PROPOSED STABILITY DATE: 2031

NOTE FROM TC/SC OFFICERS:

Copyright © **2024 International Electrotechnical Commission, IEC**. All rights reserved. It is permitted to download this electronic file, to make a copy and to print out the content for the sole purpose of preparing National Committee positions. You may not copy or "mirror" the file or printed version of the document, or any part of it, for any other purpose without permission in writing from IEC.

– 2 – IEC CDV 61675-2 © IEC 2024

CONTENTS

2	

1

3	FOREWO	RD	4
4	INTRODU	CTION	6
5	1 Scop	e	7
6	2 Norm	ative references	7
7	3 Term	s and definitions	7
, 0	4 Test	methods	15
0	4 1631	Concercl	10 ۲۲
9	4.1	General	
10	4.2		
11	4.2.1	SYSTEM SENSITIVITY	
12	4.2.2	SPATIAL RESOLUTION	
13	4.2.3		23
14	4.2.4	NON-UNIFORMITY OF RESPONSE	
15	4.2.5		
16	4.2.6		
17	4.2.7		
18	4.2.8	COUNT RATE performance	
19	4.2.9	Shield leakage test	
20	4.3	Wholebody imaging	
21	4.3.1	Scanning constancy	
22	4.3.2	SPATIAL RESOLUTION without scatter	
23	4.4	Tomographic imaging (SPECT)	
24	4.4.1	Test of PROJECTION geometry	
25	4.4.2	Measurement of SPECT SYSTEM SENSITIVITY	42
26	4.4.3	Scatter measurement	45
tp <mark>27</mark> //s	tandar4.4.4	SPECT SYSTEM SPATIAL RESOLUTION	ren-iec4916
28	4.4.5	Whole Body SPECT	51
29	4.4.6	Tomographic image quality and accuracy	52
30	5 Acco	MPANYING DOCUMENTS	62
31	5.1	General	62
32	5.2	General parameters for GAMMA CAMERAS	62
33	5.2.1	Collimators	62
34	5.2.2	Shield leakage values	62
35	5.2.3	Pre-set PULSE AMPLITUDE ANALYSER WINDOWS	62
36	5.2.4	INTRINSIC ENERGY RESOLUTION	62
37	5.2.5	COLLIMATOR dependent quantities	62
38	5.2.6	COUNT RATE CHARACTERISTICS	62
39	5.2.7	Measured COUNT RATE that is 80 % of the corresponding TRUE COUNT	
40	-	RATE	63
41	5.2.8	Dimensions of the DETECTOR FIELD OF VIEW	63
42	5.2.9	Non-uniformity characteristics	63
43	5.2.1	0 INTRINSIC SPATIAL RESOLUTION (FWHM) of the DETECTOR HEAD without	<u></u>
44	F 0 4		
45	5.2.1	I INTRINSIC SPATIAL NON-LINEARITY	
46	5.2.1	2 INTRINSIC MULTIPLE WINDOW SPATIAL REGISTRATION	63

91

47	5.3 GA	MMA CAMERA based wholebody imaging system	63
48	5.3.1	Scanning constancy	63
49	5.3.2	SPATIAL RESOLUTION	63
50	5.4 SP	ECT	63
51	5.4.1	Calibration measurements of COR	63
52	5.4.2	Measurement of head tilt	63
53	5.4.3	Measurement of COLLIMATOR hole misalignment	63
54	5.4.4	TRANSVERSE RESOLUTION (radial and tangential)	63
55	5.4.5	AXIAL RESOLUTION	63
56	5.4.6	Axial PIXEL size	63
57	5.4.7	Transaxial PIXEL size	64
58	5.4.8	DETECTOR POSITIONING TIME	64
59	5.4.9	NORMALIZED VOLUME SENSITIVITY	64
60	5.4.10	SCATTER FRACTIONS SF _i and SF	64
61	5.4.11	Wholebody SPECT spatial resolution and performance	64
62	5.4.12	Image Quality Scan set up and phantom ACTIVITY concentration	64
63	5.4.13	Image quality	64
64	5.4.14	Accuracy of ATTENUATION correction and scatter correction	64
65	5.4.15	Accuracy of SPECT and CT image registration	64
66	5.4.16	Accuracy of quantitation	64
67	Bibliography.		65
68	Index of defin	ed terms	66
69			
70	Figure 1 – Ge	eometry of PROJECTIONS	9
71	Figure 2 – Cy	lindrical phantom	14
72	Figure 3 – Co	ontainer	17
73	Figure 4 – Sli	t phantom	19
74	Figure 5 – So	purce arrangement for intrinsic measurements 2024	
ps://st 75	Figure 6 – Ca	Iculation of FWHM	oren-iec221675-2-2024
76	Figure 7 – Un	iform source	25
77	Figure 8 – Sn	nall shielded liquid source	
78	Figure 9 – So	purce positions for scanning constancy for wholebody imaging Error! Bo	okmark not defined.
79	Figure 10 – C	Cylindrical phantom	44
80	Figure 11 – P	hantom insert with holders for the scatter source	46
81	Figure 12 – E	valuation of scatter fraction	48
82	Figure 13 – R	eporting transverse resolution	50
83	Figure 14 – C	cross-section of body phantom	53
84	Figure 15 – P	hantom insert with hollow spheres	55
85	Figure 16: Im	age quality phantom position for data acquisition with masses	56
86	Figure 17 – P	Placement of ROIs in the phantom background	58
87	Figure 18: Pla	acement of quantitative ROIs in phantom background	59
88			
89 90	Table 1 – Rat measurement	DIONUCLIDES and ENERGY WINDOWS to be used for performance	16

oSIST prEN IEC 61675-2:2024

	62	2C/912/CDV	- 4 -	IEC CDV 61675-2 © IEC 2024	
92		INTERNATIONAL ELEC	CTROTECHNICA	L COMMISSION	
93		-			
94					
95					
96 07		CHARACTERISTIC	S AND TEST CO	NDITIONS -	
98		Part 2: Gamma cameras for p	olanar, wholebod	ly, and SPECT imaging	
99 100		F	OREWORD		
101 102 103 104 105 106 107 108 109 110	1)	The International Electrotechnical Commission all national electrotechnical committees (IE international co-operation on all questions con this end and in addition to other activities, I Technical Reports, Publicly Available Spec Publication(s)"). Their preparation is entrusted in the subject dealt with may participate in governmental organizations liaising with the I with the International Organization for Stand agreement between the two organizations.	(IEC) is a worldwide org C National Committees incerning standardization i EC publishes Internation ifications (PAS) and G to technical committees; in this preparatory work. EC also participate in the dardization (ISO) in access	ganization for standardization comprising s). The object of IEC is to promote in the electrical and electronic fields. To hal Standards, Technical Specifications, Guides (hereafter referred to as "IEC ; any IEC National Committee interested International, governmental and non- is preparation. IEC collaborates closely ordance with conditions determined by	
111 112 113	2)	The formal decisions or agreements of IEC on consensus of opinion on the relevant subject interested IEC National Committees.	technical matters express ts since each technical	s, as nearly as possible, an international committee has representation from all	
114 115 116 117	3)	IEC Publications have the form of recommen Committees in that sense. While all reasonab Publications is accurate, IEC cannot be hel misinterpretation by any end user.	dations for international ble efforts are made to e d responsible for the w	use and are accepted by IEC National ensure that the technical content of IEC ay in which they are used or for any	
118 119 120 121	4)	In order to promote international uniformity, transparently to the maximum extent possib between any IEC Publication and the correspo the latter.	IEC National Committee le in their national and nding national or regiona	es undertake to apply IEC Publications regional publications. Any divergence I publication shall be clearly indicated in	
122 123 124	5)	IEC itself does not provide any attestation of assessment services and, in some areas, acc services carried out by independent certificatio	conformity. Independent cess to IEC marks of con in bodies.	t certification bodies provide conformity nformity. IEC is not responsible for any	
125	6)	All users should ensure that they have the late	st edition of this publicati	on.	
126 127 / s 128 129 130	7) tanc	No liability shall attach to IEC or its directors, members of its technical committees and IEC other damage of any nature whatsoever, wh expenses arising out of the publication, use Publications.	, employees, servants or National Committees for ether direct or indirect, e of, or reliance upon,	agents including individual experts and any personal injury, property damage or or for costs (including legal fees) and this IEC Publication or any other IEC	
131 132	8)	Attention is drawn to the Normative reference indispensable for the correct application of this	s cited in this publication publication	n. Use of the referenced publications is	
133 134 135 136 137 138	9)	IEC draws attention to the possibility that the patent(s). IEC takes no position concerning the respect thereof. As of the date of publication which may be required to implement this door represent the latest information, which re https://patents.iec.ch. IEC shall not be held response	e implementation of this e evidence, validity or ap of this document, IEC h sument. However, implem may be obtained from sponsible for identifying a	s document may involve the use of (a) plicability of any claimed patent rights in had not received notice of (a) patent(s), henters are cautioned that this may not h the patent database available at my or all such patent rights.	
139 140 141	IE me so	C 61675-2 has been prepared by sub- edicine and radiation dosimetry, of ftware, and systems. It is an Internation	committee 62C: Equ IEC technical com nal Standard.	ipment for radiotherapy, nuclear mittee 62: Medical equipment,	
142 143 144	Th IE ha	his third edition cancels and replaces C 60789:1992, IEC 61675-2:1998, IEC as been modified to address systems be	the second edition 61675-2:1998/AMD ased on pixelated set	published in 2015. It combines 1:2004, and IEC 61675-3:1998. It mi-conductor detectors. Tests for	

nas been modified to address systems based on pixelated semi-conductor detectors. Tests for
 wholebody SPECT performance and quantitative SPECT image accuracy have been added. It
 has been reformatted, updated, and partly aligned with NEMA NU 1-2018. Due to the lack of
 market share of SPECT-systems operated in coincidence mode all such tests have been
 removed. This edition constitutes a technical revision.

IEC CDV 61675-2 © IEC 2024

149 The text of this International Standard is based on the following documents:

Draft	Report on voting
XX/XX/FDIS	XX/XX/RVD

150

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

153 The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

- 158 In this standard, the following print types are used:
- 159 TERMS DEFINED IN CLAUSE 3 OF THIS STANDARD OR LISTED IN THE INDEX OF DEFINED TERMS:
 160 SMALL CAPITALS.
- 161 The requirements are followed by specifications for the relevant tests.

162 The committee has decided that the contents of this document will remain unchanged until the 163 stability date indicated on the IEC website under webstore.iec.ch in the data related to the 164 specific document. At this date, the document will be

- 165 reconfirmed,
- 166 withdrawn,

• replaced by a revised edition, or provide the providet the provide the provide the provi

168 • amended.

169

DSIST prEN IEC 61675-2:2024

ttps://standards.iteh.ai/catalog/standards/sist/9d8b9f71-8c35-4b92-8f24-96cbee63d283/osist-pren-iec-61675-2-2024

62C/912/CDV

IEC CDV 61675-2 © IEC 2024

INTRODUCTION

The test methods specified in this part of IEC 61675 have been selected to reflect as much as possible the clinical use of GAMMA CAMERAS for planar imaging, PLANAR WHOLEBODY IMAGING EQUIPMENT, and SINGLE PHOTON EMISSION COMPUTED TOMOGRAPHY (SPECT). It is intended that the test methods are carried out by manufacturers thereby enabling them to describe the characteristics of the systems on a common basis.

176

170

iTeh Standards (https://standards.iteh.ai) Document Preview

<u>oSIST prEN IEC 61675-2:2024</u> https://standards.iteh.ai/catalog/standards/sist/9d8b9f71-8c35-4b92-8f24-96cbee63d283/osist-pren-iec-61675-2-2024

IEC CDV 61675-2 © IEC 2024

RADIONUCLIDE IMAGING DEVICES -

CHARACTERISTICS AND TEST CONDITIONS –

177

178

179 180

Part 2: Gamma cameras for planar, wholebody, and SPECT imaging

181 182

183 **1 Scope**

This part of IEC 61675 specifies terminology and test methods for describing the characteristics of GAMMA CAMERAS equipped with PARALLEL HOLE COLLIMATORS that are capable of planar imaging. Additional tests are specified for those GAMMA CAMERAS that are capable of SINGLE PHOTON EMISSION COMPUTED TOMOGRAPHY (SPECT) or planar wholebody imaging (PLANAR WHOLEBODY IMAGING EQUIPMENT) or SPECT wholebody imaging. SPECT systems may also be equipped with a CT system for hybrid imaging.

190 These GAMMA CAMERAS consist of a gantry, single or multiple DETECTOR HEADS, and a 191 computer for data acquisition, processing, storage, and display. The DETECTOR HEADS may 192 contain single or multiple scintillation crystals or solid state detectors.

Novel camera designs with multiple DETECTOR HEADS that are not capable of planar acquisition
 are not included in the scope of this standard.

195 **2 Normative references**

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

Document Preview

IEC TR 60788:2004, Medical electrical equipment – Glossary of defined terms

IEC 61675-1:2022, Radionuclide imaging devices – Characteristics and test conditions –
 Part 1: Positron emission tomographs

IEC 63073-1:2020, Dedicated radionuclide imaging devices – Characteristics and test conditions – Part 1: Cardiac SPECT

3 Terms and definitions

For the purposes of this document the terms and definitions given in IEC TR 60788:2004, IEC 63071-1:2020 and IEC 61675-1:2022 (some of which are repeated here for convenience), and the following terms and definitions apply.

ISO and IEC maintain terminology databases for use in standardization at the followingaddresses:

- IEC Electropedia: available at https://www.electropedia.org/
- ISO Online browsing platform: available at https://www.iso.org/obp

213 **3.1**

214 ADDRESS PILE UP

- 215 <GAMMA CAMERA> false address calculation of an artificial event which passes the ENERGY
- 216 WINDOW, but is formed from two or more events by the PILE UP EFFECT

- 8 -

IEC CDV 61675-2 © IEC 2024

d including the SYSTEM

217	3.2
218	AXIAL FIELD OF VIEW
219	dimensions of a slice through the TOMOGRAPHIC VOLUME parallel to an
220	AXIS
221	Note 1 to entry: In practice it is specified only by its axial dimension given by the dist

Note 1 to entry: In practice it is specified only by its axial dimension given by the distance between the centres of
 the outermost defined IMAGE PLANES plus the average of the measured AXIAL SLICE WIDTH measured as EQUIVALENT
 WIDTH (EW).

224 **3.3**

225 AXIAL RESOLUTION

62C/912/CDV

- for tomographs with sufficiently fine axial sampling fulfilling the sampling theorem, SPATIAL RESOLUTION along a line parallel to the SYSTEM AXIS
- 228 **3.4**

229 BAD PIXEL

- 230 detector pixel within the DETECTOR FIELD OF VIEW of the detector that has been physically or
- electronically turned off such that gamma rays which interact in that pixel are not recorded by
- 232 the camera

233 [SOURCE: IEC 63073-1:2020, 3.2]

234 **3.5**

235 CENTRE OF ROTATION

- 236 COR
- origin of that coordinate system, which describes the PROJECTIONS of a transverse slice with respect to their orientation in space
 - r orientation in space
- Note 1 to entry: The CENTRE OF ROTATION of a transverse slice is given by the intersection of the SYSTEM AXIS with the mid-plane of the corresponding OBJECT SLICE.
- 241 Note 2 to entry: The second note to entry concerns the French text only.

Document Preview

242 **3.6**

243 COLLIMATOR AXIS

- straight line which passes through the geometrical centre of the exit field and entrance field of
- 245 the COLLIMATOR
- 246 **3.7**

247 COLLIMATOR FRONT FACE

- 248 surface of the COLLIMATOR which is closest to the object being imaged
- 249 **3.8**

250 COORDINATE SYSTEM OF PROJECTION

- 251 Cartesian system of the IMAGE MATRIX of each two-dimensional PROJECTION with axes X_p and 252 Y_p
- 253 Note 1 to entry: Axes X_p and Y_p are defined by the axes of the IMAGE MATRIX.
- Note 2 to entry: The Y_p axis and the PROJECTION of the SYSTEM AXIS onto the COLLIMATOR FRONT FACE have to be in parallel.
- Note 3 to entry: The origin of the COORDINATE SYSTEM OF PROJECTION may be the centre of the IMAGE MATRIX (see
 Figure 1).

62C/912/CDV

258

NOTE The FIXED COORDINATE SYSTEM X, Y, Z has its origin at the centre of the TOMOGRAPHIC VOLUME (shown as a 1675-2-2024 cylinder), the Z-axis being the SYSTEM AXIS. The COORDINATE SYSTEM OF PROJECTION X_p , Y_p is shown for a PROJECTION ANGLE θ . For each θ , the one-dimensional PROJECTION of the marked OBJECT SLICE has the address range shown (hatched). Within this range the CENTRE OF ROTATION is projected onto the address X_p (offset).

Figure 1 – Geometry of PROJECTIONS

263

264 **3.9**

265 COUNT LOSS

- difference between measured COUNT RATE and TRUE COUNT RATE, which is caused by the finite
- 267 RESOLVING TIME of the instrument
- 268 [SOURCE: IEC 61675-1:2022, 3.8.1]
- 269 **3.10**
- 270 COUNT RATE
- number of counts per unit of time
- 272 [SOURCE: IEC 61675-1:2022, 3.8.2]
- 273 **3.11**

274 COUNT RATE CHARACTERISTIC

275 function giving the relationship between observed COUNT RATE and TRUE COUNT RATE

	62C/912/CDV		– 10 –	IEC CDV 61675-2 © IEC 2024	
276	[SOURCE: IEC TR 60788:2004, rm-34-21]				
277 278 279 280 281	3.12 DETECTOR FIELD OF VIEW FOV region of the detector within which events are included in the display image, and for which all performance specifications are provided				
282	Note 1 to entry: The no	te to entry regarding the ab	breviation concer	ns the French text only.	
283 284 285	3.13 DETECTOR HEAD TILT deviation of the COLLIMATOR AXIS from orthogonality with the SYSTEM AXIS				
286 287 288	3.14 DETECTOR POSITIONIN fraction of the total t	IG TIME ime spent on an acqui	sition which is	not used in collecting data	
289 290 291 292	3.15 DETECTOR PIXEL smallest discrete unit of a pixelated DETECTOR HEAD that is able to provide distinct energy, spatial, and timing information about detected photons				
293 294 295 296 297	3.16 EMISSION COMPUTED ECT imaging method for two-dimensional slic	томодкарну the representation of es through the object	the spatial dis	ribution of RADIONUCLIDES in selected	
298 299 300	3.17 ENERGY WINDOW range defining the e	nergy of the signals ac	ccepted by the	device for further processing	
301 302 303 304 305	3.18 EQUIVALENT WIDTH EW ds.iteh.ai/catalo width of that rectang e.g., the POINT SPRE/	<u>oSIST pr</u> g/standards/sist/9d8b9 gle having the same a AD FUNCTION	EN IEC 61675 9771-8c35-4b9 area and the s	5-2:2024 2-8(24-96cbee63d283/osist-pren-iec-61675-2-2024 ame height as the response function,	
306	[SOURCE: IEC TR 60788:2004, rm-34-45]				
307 308 309	3.19 FIXED COORDINATE SYSTEM Cartesian system with axes X , Y , and Z				
310	Note 1 to entry: Z being	the SYSTEM AXIS.			
311 312	Note 2 to entry: The ori (see Figure 1).	igin of the fixed coordinat	TE SYSTEM is defir	ned by the centre of the TOMOGRAPHIC VOLUME	
313	Note 3 to entry: The sys	STEM AXIS is orthogonal to a	all transverse slice	98.	
314 315 316	3.20 IMAGE MATRIX arrangement of MATE	RIX ELEMENTS in a prefe	erentially Carte	esian coordinate system	

- 317 **3.21**
- 318 IMAGE PLANE
- 319 plane assigned to a plane in the OBJECT SLICE

IEC CDV 61675-2 © IEC 2024	– 11 –	62C/912/CDV
----------------------------	--------	-------------

- 320 Note 1 to entry: Usually the IMAGE PLANE is the mid-plane of the corresponding OBJECT SLICE.
- 321 **3.22**

322 INTRINSIC ENERGY RESOLUTION

- FULL WIDTH AT HALF MAXIMUM of the full energy absorption peak in the INTRINSIC ENERGY SPECTRUM for a specified RADIONUCLIDE
- 325 **3.23**

326 INTRINSIC ENERGY SPECTRUM

- 327 measured histogram of pulse heights for the DETECTOR HEAD without COLLIMATOR
- 328 Note 1 to entry: The pulse height should be expressed as corresponding energy.

329 **3.24**

330 INTRINSIC NON-UNIFORMITY OF RESPONSE

331 NON-UNIFORMITY OF RESPONSE of the DETECTOR HEAD without COLLIMATOR

332 **3.25**

333 INTRINSIC SPATIAL NON-LINEARITY

334 SPATIAL NON-LINEARITY of the DETECTOR HEAD without COLLIMATOR

335 **3.26**

336 INTRINSIC SPATIAL RESOLUTION

337 <GAMMA CAMERA> SPATIAL RESOLUTION in air for a specified RADIONUCLIDE measured without
 338 the COLLIMATOR

339 **3.27**

340 LINE SOURCE

341 straight RADIOACTIVE SOURCE approximating a δ -function in two dimensions and being constant

- 342 (uniform) in the third dimension
- 343 **3.28**

344 LOW-ENERGY-TAIL RATIO

Document Preview

345 ratio of the counts measured in an energy window of width 2* EFWHM centred at energy Epeak -

346 2* *E*FWHM divided by the counts measured in an energy window of width 2* *E*FWHM centred at an

347 energy of E_{peak} , where E_{peak} is the peak energy of the RADIOISOTOPE being measured and 675.2.2024 348 E_{FWHM} is the energy resolution of the detector

349 [SOURCE: IEC 63073-1:2020, 3.12]

350 **3.29**

351 MATRIX ELEMENT

smallest unit of an IMAGE MATRIX, which is assigned in location and size to a certain volume
 element of the object (VOXEL)

354 **3.30**

355 MULTIPLE WINDOW SPATIAL REGISTRATION

measured position of a source as a function of the ENERGY WINDOW setting

357 **3.31**

358 NORMALIZED VOLUME SENSITIVITY

- VOLUME SENSITIVITY divided by the AXIAL FIELD OF VIEW of the tomograph or the phantom length, whichever is the smaller
- 361 **3.32**
- 362 OBJECT SLICE
- 363 slice in the object

62C/912/CDV	– 12 –	IEC CDV 61675-2 © IEC 2024

- Note 1 to entry: The physical property of this slice that determines the measured information is displayed in the tomographic image.
- 366 **3.33**
- 367 OFFSET
- deviation of the position of the PROJECTION of the COR (X'_p) from $X_p = 0$ (see Figure 1)

369 **3.34**

370 PARALLEL HOLE COLLIMATOR

- 371 COLLIMATOR with a number of apertures, the axes of which are parallel
- 372 **3.35**
- 373 PILE UP EFFECT
- false measurement of the pulse amplitude, due to the absorption of two or more gamma rays,
- 375 reaching the same radiation detector within the RESOLVING TIME
- 376 **3.36**
- 377 **PIXEL**
- 378 MATRIX ELEMENT in a two-dimensional IMAGE MATRIX

379 **3.37**

380 PLANAR WHOLEBODY IMAGING EQUIPMENT

- 381 <GAMMA CAMERA> GAMMA CAMERA, with one or two DETECTOR HEAD(S), in which the image of an
- extended object is formed by moving the DETECTOR HEAD(S) or the object in the axial direction relative to each other
- 384 **3.38**
- 385 POINT SOURCE
- 386 RADIOACTIVE SOURCE approximating a δ -function in all three dimensions
- (https://standards.iteh.ai)
- 387 **3.39**
- 388 POINT SPREAD FUNCTION
- 389 **PSF**
- 390 scintigraphic image of a POINT SOURCE

oSIST prEN IEC 61675-2:2024

- 1tt₃₉₁//sta**3.40** ds.iteh.ai/catalog/standards/sist/9d8b9f71-8c35-4b92-8f24-96cbee63d283/osist-pren-iec-61675-2-2024
 - 392 PROJECTION
 - transformation of a three-dimensional object into its two-dimensional image or of a two-
 - dimensional object into its one-dimensional image, by integrating the physical property which
 - determines the image along the direction of the PROJECTION BEAM
 - Note 1 to entry: This process is mathematically described by line integrals in the direction of PROJECTION and called the Radon-transform.
 - 398 **3.41**
 - 399 **PROJECTION ANGLE**
 - 400 angle at which the PROJECTION is measured or acquired
 - 401 Note 1 to entry: See Figure 1.
 - 402 **3.42**

403 **PROJECTION BEAM**

- determines the smallest possible volume in which the physical property which determines the
 image is integrated during the measurement process
- 406 Note 1 to entry: Its shape is limited by the SPATIAL RESOLUTION in all three dimensions and may vary with photon
 407 energy and COLLIMATOR design.
- 408 Note 2 to entry: In SPECT the PROJECTION BEAM usually has the shape of a long thin diverging cone.