FINAL DRAFT

INTERNATIONAL STANDARD

ISO/FDIS 11738

ISO/TC 23/SC 18

Secretariat: SII

Voting begins on: **2021-08-02**

Voting terminates on: **2021-09-27**

Agricultural irrigation equipment — Control heads

Matériel agricole d'irrigation — Installations de tête

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/FDIS 11738
https://standards.iteh.ai/catalog/standards/sist/86115f72-b047-478f-aed6-dde4b68f59c0/iso-fdis-11738

RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT, WITH THEIR COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE AND TO PROVIDE SUPPORTING DOCUMENTATION.

IN ADDITION TO THEIR EVALUATION AS BEING ACCEPTABLE FOR INDUSTRIAL, TECHNOLOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT INTERNATIONAL STANDARDS MAY ON OCCASION HAVE TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL TO BECOME STANDARDS TO WHICH REFERENCE MAY BE MADE IN NATIONAL REGULATIONS.

Reference number ISO/FDIS 11738:2021(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/FDIS 11738 https://standards.iteh.ai/catalog/standards/sist/86115f72-b047-478f-aed6-dde4b68f59c0/iso-fdis-11738

COPYRIGHT PROTECTED DOCUMENT

© ISO 2021

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Contents		Page
Fore	reword	iv
1	Scope	1
2	Normative references	1
3	Terms and definitions	1
4	Classification	
	4.1 General	
	4.2 Irrigation control head for filtration	4
	4.3 Irrigation control head for automation	4
	4.4 Irrigation control head for pressure or flow regulation	4
	4.5 Irrigation control head for chemigation	4
	4.6 Irrigation control head for measuring flow rate and/or volum	
	4.7 Irrigation control head for safety	4
5	General requirements	4
6	Materials	5
7	Installation of the components	6
8	Test methods and requirements	8
	8.1 Visual inspection	8
	8.2 In situ test of resistance and watertightness under hydraulic Test of operation	pressure9
	8.3 Test of operation STANDARD FREVIEW	9
9	Marking (standards.iteh.ai)	9
Ann	nex A (informative) Irrigation control heads — Examples	11
Rihl	liography ISO/FDIS 11738	
וטום	bliography https://standards.iteh.ai/catalog/standards/sist/86115f72-b047-478f-aec	1610
	dde4b68f59c0/iso-fdis-11738	

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html. (Standards.iteh.ai)

This document was prepared by Technical Committee ISO/TC 23, *Tractors and machinery for agriculture and forestry*, Subcommittee SC 18, *Irrigation and drainage equipment and systems*.

This second edition cancels and replaces the first edition (ISO 11738:2000), which has been technically revised.

The main changes compared to the previous edition are as follows.

- New types of control heads and components of control heads were included, for example, irrigation control head for filtration with two or more media filters.
- Symbols used in this edition were changed or revised to conform to ISO 15081:2011.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Agricultural irrigation equipment — Control heads

1 Scope

This document specifies requirements for the components and method of installation of pressurized irrigation system control heads, referred to hereinafter as irrigation control heads, with a nominal size of up to and including 200 mm (nominal size of an irrigation control head or nominal size of a component).

This document is applicable only to the above-ground components of irrigation control heads for sprinkler irrigation and micro-irrigation (mini-sprinklers, drip irrigation, etc.). It is applicable to the basic irrigation control head, on which other irrigation control and command components (electrical, electronic and hydraulic) can be assembled, but does not deal with these additional components.

This document is not applicable to systems and/or components that can be required to prevent the water from freezing in the irrigation control head, such as dry-barrel hydrants or other types of hydrants.

This document does not specify construction or operating requirements for the individual components that make up the irrigation control head. These requirements are specified in the relevant standards for each component. **iTeh STANDARD PREVIEW**

2 Normative references (standards.iteh.ai)

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 7-1, Pipe threads where pressure-tight joints are made on the threads — Part 1: Dimensions, tolerances and designation

ISO 7005-1, Pipe flanges — Part 1: Steel flanges for industrial and general service piping systems

ISO 7005-2, Metallic flanges — Part 2: Cast iron flanges

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at http://www.electropedia.org/

3.1

activating valve

type of valve which is used to initiate and shut off the flow of water through an *irrigation control head* (3.8)

EXAMPLE Manually operated valve, hydraulically operated valve, volumetric valve (3.17).

3.2

automatic self-cleaning strainer-type filter

filter with a flushing capability automatically activated by pressure differential, by duration of infiltration, by volume of water filtered, by some other physical quantity or by any combination of these

3 3

air release valve

valve which opens automatically to allow air from the atmosphere to enter the water pipeline during drainage of the line and/or venting of air from the water pipeline to the atmosphere during filling or during normal operation of the pipeline under pressure

3.4

backflow preventer

mechanical assembly to prevent flow of water backwards into the distributing pipes of a water supply system to protect against entry of substances which can constitute a health hazard

3.5

check valve

valve which permits flow of water in one direction only

3.6

fertilizer injector tank

pressure vessel connected to an $irrigation\ system\ (3.9)$ in an in-line or on-line configuration, together with the pipes and fittings connecting it to the irrigation system, for the purpose of injecting chemicals into the irrigation system

3.7

water-driven chemical injector pump

hydraulic pump intended to inject chemicals into an *irrigation system* (3.9), powered by a single source energy supplied by *irrigation water* (3.10) through a hydraulic motor, such as a piston or turbine

iTeh STANDARD PREVIEN

3.8

irrigation control head (standards.iteh.ai)

assembly of components and pipes installed at the head of an irrigated plot which serves to control the functioning of an *irrigation system* (3.9), that is, initiation and shutting off of the flow of water, pressure regulation, water metering, *filtration* (3.19) and injection of chemicals

3.9

dde4b68f59c0/iso-fdis-11738

irrigation system assembly of pipes, components, and devices installed in the field for the purpose of irrigating a specific

3.10

irrigation water

water of potable quality, which may contain chemicals of a type and concentration generally used in agricultural irrigation or which is of a quality approved for use in irrigation

3 11

nominal size of an irrigation control head

numerical designation used to refer to the size of the pipe at the inlet or the outlet, whichever is smaller, of an *irrigation control head* (3.8)

3.12

nominal size of a component

numerical designation used to refer to the size of an *irrigation control head* (3.8) which is identical to the nominal diameter of the pipe or pipes to which the irrigation control head is intended to be connected directly without an intermediate fitting

Note 1 to entry: A single number designation is adequate if the inlet and outlet ports are of the same size.

3.13

pressure regulator

valve in which the water passage widens or narrows automatically without an external device to maintain the pressure at the outlet of the valve close to a pre-set value under varying pressures or flow rates at the inlet of the valve

3.14

union

threaded coupling which is used to connect two pipes and which does not require rotation of the pipes during assembly and disassembly

3.15

media filter

filter in which clogging material is trapped within the interior of a three-dimensional filter medium. such as sand, gravel, textile, fibres or a porous mass of bonded particles

3.16

strainer-type filter

strainer

device containing one or more filter elements, such as a screen or a mesh, used for separating clogging material from water flowing through the device by collecting it on the surface of the filter element or elements

[SOURCE: ISO 9912-1:2004, 2.8]

3.17

volumetric valve

valve capable of automatically delivering pre-set volumes of water within the range of flow rates, as a result of measuring the volume of water flowing through the valve

[SOURCE: ISO 7714:2018, 3.1]

iTeh STANDARD PREVIEW 3.18

pressure regulation

pressure regulation (standards.iteh.ai) reduction of pressure prevailing in a supply line to maintain it at a relatively constant pre-set value in an irrigation system (3.9)

ISO/FDIS 11738

https://standards.iteh.ai/catalog/standards/sist/86115f72-b047-478f-aed6-3.19 dde4b68f59c0/iso-fdis-11738

filtration

process which employs a permeable medium and/or a spinning component to separate, from water, any materials that would clog an *irrigation system* (3.9) and which also employs a means for removing these materials from the permeable medium or the spinning component in order to renew the capacity of the permeable medium or the spinning component to separate these materials from the water

3.20

chemigation

injection of chemicals, including fertilizers, into irrigation water (3.10) and conveyance of these chemicals to plants

3.21

automation

methods and means of activating or terminating operation of an *irrigation system* (3.9) or of changing its operating conditions according to a preconceived plan and without manual intervention

3.22

flow regulation

function intended to control the flow rate of water to reduce it to that required in an *irrigation system* (3.9) and maintain it at a relatively constant value

4 Classification

4.1 General

Irrigation control heads are classified according to their main function, as indicated in 4.2 to 4.7.

NOTE Most irrigation control heads fulfil a number of functions simultaneously. The following classification is made principally in order to facilitate reference to these functions in this document.

4.2 Irrigation control head for filtration

Strainer-type filter, automatic filter, media filter, etc.

See examples in Figures A.1, A.3, A.4, A.5 and A.6.

4.3 Irrigation control head for automation

Volumetric valve-controlled, hydraulically operated, electrically operated, electronically operated, computer-controlled, etc.

See examples in Figures A.2 and A.3.

4.4 Irrigation control head for pressure or flow regulation

See examples in Figures A.2 and A.3 STANDARD PREVIEW

4.5 Irrigation control head for chemigation rds.iteh.ai)

With chemical injection tank unit or electrically or hydraulically operated chemical injection pump.

See example in Figure A.6. https://standards.iteh.ai/catalog/standards/sist/86115f72-b047-478f-aed6-dde4b68f59c0/iso-fdis-11738

4.6 Irrigation control head for measuring flow rate and/or volume

With water meter, flow meter.

See examples in Figures A.2 and A.3.

4.7 Irrigation control head for safety

With check valve, backflow preventer, vacuum relief valve or air-release valve.

See example in Figure A.6.

5 General requirements

5.1 The irrigation control head shall be located in a place which is convenient for access and operation, free from weeds or other objectionable growth, such as tall brush and heavy vines, and which is protected from accidental mechanical damage by vehicles, tractors or livestock, and fire.

In medium-textured and fine-textured soils, or in poor drainage conditions, gravel or a similar material shall be spread around the area of the irrigation control head in order to avoid accumulation of mud and maintain stable soil conditions around the irrigation control head. Alternatively, the irrigation control head may be assembled on a rigid platform made of concrete or other suitable material.

Drainage facilities shall be provided in the area of the irrigation control head, especially for those irrigation control heads that contain a filtration device, a chemical injector pump or tank, or a discharging backflow preventer.

The drainage shall be such that spills of chemicals or irrigation water containing injected chemicals cannot return directly to ground or surface water supplies and shall contain them in an environmentally sound manner.

The irrigation control head shall be installed in a manner to prevent access to it by children or unauthorized persons who might tamper with the components or with the chemicals. This can be accomplished with fenced enclosures or locking mechanisms on the various components and containers.

- **5.2** The height of the installation shall provide for convenient disassembly and assembly of the various components for the purpose of cleaning, repair and replacement while preventing entry of dirt or debris into the irrigation system. The components shall be installed at a minimum height of 0,4 m above the ground surface. This requirement does not apply to system components standing on the ground surface such as media filters.
- **5.3** Irrigation control heads shall be supported to prevent or reduce structural stresses in their components and to prevent vibration of the irrigation control heads during operation.

The required stabilization shall be obtained by a thrust block at the inlet and outlet pipes and/or suitable supports, if necessary, especially beneath the heavy components of the irrigation control head.

5.4 The distance of the different components of the irrigation control head from each other shall be sufficient to ensure reliable function of meters and gauges in accordance with manufacturer requirements and to facilitate operation of the system, maintenance and cleaning of filters and dismantling and replacement of those parts which are replaceable in the field. The exposed length of the threaded nipples after their assembly shall be sufficient to enable convenient gripping with a pipe wrench.

Water meters shall be installed in accordance with the general specifications concerning these meters.

5.5 The components of an irrigation control head shall be connected to the piping by means of threads, flanges or other suitable means of connection and ards/sist/86115f72-b047-478f-aed6-dde4b68f59c0/iso-fdis-11738

Threads of components for connection of the irrigation control head to the irrigation pipeline shall conform with ISO 7-1. However, other threads are allowed provided that a suitable adaptor is supplied with each threaded connection, making it conform with ISO 7-1.

Flanges shall conform with ISO 7005-1 or ISO 7005-2.

6 Materials

- **6.1** The pipes and components from which the irrigation control head is assembled shall be made of materials resistant to irrigation water at a temperature not exceeding 60 °C for each component and type of pipe as specified in 7.1.
- **6.2** It is advisable, wherever possible, not to connect components and pipes made from metals with different galvanic potentials but to make the connection with a dielectric union in order to avoid electrolysis and corrosion.
- **6.3** Components and pipes made from plastics materials shall be opaque, except of clear plastic materials that are photo/UV stable. Components which are exposed to ultra-violet radiation shall be externally protected or shall contain additives to improve their resistance to degradation from ultra-violet radiation under normal operating conditions.
- **6.4** Pipes and components such as water-driven chemical injector pumps, chemical injection tank units, valves and pipes for injection of the fertilizers or other chemicals which come in direct contact with highly concentrated fertilizers or other chemicals shall be resistant to or protected against the corrosive nature of the fertilizers and other chemicals.

7 Installation of the components

- **7.1** For components comprising an irrigation control head, see the following International Standards:
- **7.1.1** For water meters, see ISO 4064-1, [1] ISO 4064-2 [2] and ISO 4064-3 [3].
- **7.1.2** For PVC-U pipes, seethe ISO 4422 series[4].
- **7.1.3** For polyethylene (PE) pipes, see the ISO 4427^[5].
- **7.1.4** For automatic irrigation systems Hydraulic control, see ISO/TR 8059[7].
- **7.1.5** For irrigation valves, see the ISO 9635 series [8].
- **7.1.6** For filters for micro-irrigation, see ISO 9912-2, [10] ISO 9912-3, [11] and ISO 9912-4 [12] according to the type.
- **7.1.7** For direct-acting pressure-regulating valves, see ISO 10522[13].
- **7.1.8** For float type air release valves, see ISO 11419[14].
- **7.1.9** For meters for irrigation water, see ISO 1639916RD PREVIEW
- 7.1.10 For manually and hydraulically operated plastic valves, see 150 24649:—[17].
- 7.2 The components of the irrigation control head shall be installed in a manner and sequence of assembly which is in accord with their function. dde4b68f59c0/iso-fdis-11738

The components of all classes of irrigation control heads shall be assembled in the order shown in Figures A.1 to A.6, or according to the manufacturer's instructions.

7.3 For irrigation systems in which the inlet of the irrigation control head normally operates under pressure, the irrigation control heads for filtration and/or the irrigation control heads for chemigation shall contain a valve for flushing the filter element of the filter and/or for filling the chemical injection tank with irrigation water. See item 2 (flushing valve) in Figure A.6.

The valve shall be installed in a position which facilitates its opening so as to permit the flow of water through the valve without the water passing through the filter, the water-driven chemical injector pump or the fertilizer injector tank.

The outlet of the valve shall be threaded or shall be fitted with another device that enables it to be connected to a flexible pipe.

- **7.4** Irrigation control heads containing chemical injection tank units, with the exception of indirect chemical injection tank (class 4.4) units, shall carry a warning label or tag alerting the user that the mixing ratio of the material being injected is constantly changing during the injection cycle.
- **7.5** An irrigation control head used for chemigation shall contain a filter downstream from the point of injection of the fertilizers or other chemicals, unless a filter is installed at some other point between the irrigation control head and the sprinklers or emitters.
- **7.6** When the irrigation control head is equipped with two filters, generally for trapping different categories of solids, the first filter shall be installed upstream from the point of injection of the chemicals

and the second filter (the check filter) shall be installed downstream from the point of injection of the chemicals and close to the outlet of the irrigation control head.

- **7.7** Filters with different filtration functions shall be installed so that the filter with the lower filtration ability is installed upstream from the filter with the higher filtration ability.
- **7.8** In all irrigation control heads, there shall be at least one pressure-measurement tap at the outlet of the irrigation control head. In irrigation control heads for pressure regulation, there shall be two pressure-measurement taps, one at the inlet and one at the outlet of the irrigation control head.
- **7.9** A pressure-measurement tap shall be installed at the inlet and outlet of the filter. Pressure-measurement taps may be combined with those intended for a chemigation unit.
- **7.10** An irrigation control head which contains media filters shall also be fitted with pipes and valves necessary to reverse the flow in order to flush the filters. The irrigation control head shall include a pipe or hose to direct the flush water away from the irrigation control head, water source or intake. Requirements on handling flush water are given in local regulations.

It is customary to install two or more media filters in parallel so that clean water from one filter can be used for back flushing another filter.

7.11 Irrigation control heads equipped for chemigation shall contain a component, or a number of components and system interlocks, to prevent water containing injected chemicals from flowing in the opposite direction to the intended direction of flow, that is, backflow The type of component and interlock for prevention of backflow shall be determined according to the level of hazard and the type of water supply and irrigation system, and in accordance with the instructions of the authorities responsible for preventing backflow of water in or from the irrigation system.

ISO/FDIS 11738

The component for prevention of backflow shall be a reduced-pressure zone backflow preventer or an air gap. Figure A.6 shows a suitable location for a backflow preventer or an air gap. Application of this paragraph presupposes awareness of applicable legal requirements.

For irrigation control heads which include chemigation components in which the chemicals are not injected hydraulically by irrigation system water, the irrigation control head shall contain devices which will prevent the continuation of injection of chemicals into the irrigation system when the flow of water is interrupted or the direction of flow is reversed.

Irrigation control heads equipped for chemigation and with automatic filter flushing devices shall have means for simultaneous filter flushing and chemical injection.

- **7.12** Unless the chemigation unit already contains a vacuum breaker, an irrigation control head used for chemigation shall contain a vacuum relief valve which shall prevent drainage of the chemicals from the chemical injection tank to the water supply system or to the irrigation system through the water-driven chemical injector pump or the chemical injection tank unit resulting from the generation of a vacuum in the irrigation control head.
- **7.13** If the irrigation control head is installed at a topographic high point, it shall contain a vacuum relief or an air- release valve which shall be installed in the upper part of the irrigation control head.
- **7.14** An irrigation control head used for pressure regulation shall contain a pressure regulator installed at the outlet of the irrigation control head as the component farthest downstream in the irrigation control head, unless its function is to protect components of the irrigation control head from pressures higher than those which the irrigation control head is designed to withstand.