INTERNATIONAL STANDARD

Third edition 2022-08

Financial services — Requirements for message authentication using symmetric techniques

Services financiers — Exigences pour l'authentification des messages utilisant des techniques symétriques

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 16609:2022</u> https://standards.iteh.ai/catalog/standards/sist/39f261c8-27bb-4c95-9c30-383d7f017cc4/iso-16609-2022

Reference number ISO 16609:2022(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 16609:2022

https://standards.iteh.ai/catalog/standards/sist/39f261c8-27bb-4c95-9c30-383d7f017cc4/iso-16609-2022

COPYRIGHT PROTECTED DOCUMENT

© ISO 2022

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Contents

Page

Foreword Introduction			iv
			v
1	Scop	De	
2	Normative references		
3	Terms and definitions		
4	Prin 4.1 4.2 4.3	ciples Protection of authentication keys Message authentication elements Detection of duplication, loss or sequence errors	3 3 3 4
5	Proc 5.1 5.2 5.3 5.4	 Approved authentication mechanisms based on the ISO/IEC 9797 series. 5.4.1 General. 5.4.2 Approved message authentication mechanisms based on ISO/IEC 9797-1 5.4.3 Approved message authentication mechanisms based on ISO/IEC 9797-2 5.4.4 Approved message authentication mechanisms based on ISO/IEC 9797-3 5.4.5 Implementation recommendations 	4 4 5 5 5 5 5 5 6 7 8
Anne	x A (in	oformative) Protection against duplication and loss using MIDs	9
Anne	x B (in	oformative) General tutorial information	
Biblic	grapl	hy	

https://standards.iteh.ai/catalog/standards/sist/39f261c8-27bb-4c95-9c30-383d7f017cc4/iso-16609-2022

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see <u>www.iso.org/</u> iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 68, *Financial services*, Subcommittee SC 2, *Financial services*, *security*.

<u>SO 16609:2022</u>

This third edition cancels and replaces the second edition (ISO 16609:2012), which has been technically revised. 383d7f017cc4/iso-16609-2022

The main changes are as follows:

— updated to include newer hash functions specified in updated versions of the ISO/IEC 9797 series.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

Introduction

A message authentication code (MAC) is a data field used to verify the authenticity of a message, generated by the sender of the message using a key shared with the recipient. The message and the MAC are transmitted together. The recipient recalculates the MAC using the transmitted message and compares it with the transmitted MAC, which allows detection of an altered message. While non-keyed message integrity methods, such as checksums, only provide a method to detect *accidental* alteration of the message, MACs additionally detect deliberate alteration, as the adversary would not have access to the key used to generate the MAC.

A MAC can also be used as a means to confirm integrity of stored data.

This document has been prepared so that institutions involved in financial services activities wishing to implement message authentication can do so in a manner that is secure and facilitates interoperability between separate implementations.

This document identifies ciphers, hash functions and algorithms from the ISO/IEC 9797 series that are specifically approved for secure banking purposes.

General tutorial information can be found in <u>Annex B</u>.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 16609:2022 https://standards.iteh.ai/catalog/standards/sist/39f261c8-27bb-4c95-9c30-383d7f017cc4/iso-16609-2022

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 16609:2022</u> https://standards.iteh.ai/catalog/standards/sist/39f261c8-27bb-4c95-9c30-383d7f017cc4/iso-16609-2022

Financial services — Requirements for message authentication using symmetric techniques

1 Scope

This document specifies procedures, independent of the transmission process, for protecting the integrity of transmitted financial-service-related messages and for verifying that a message has originated from an authorized source, or that stored data has retained integrity. A list of block ciphers approved for the calculation of a message authentication code (MAC) is also provided. The authentication methods defined in this document are applicable to stored data and to messages formatted and transmitted both as coded character sets or as binary data.

This document is designed for use with symmetric algorithms where both sender and receiver use the same key. It does not specify methods for establishing the shared key. Its application will not protect the user against internal fraud perpetrated by the sender or the receiver, nor against forgery of a MAC by the receiver.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 8583-1, Financial transaction card originated messages — Interchange message specifications — Part 1: Messages, data elements and code values 16609-2022

ISO 11568-1, Banking — Key management (retail) — Part 1: Principles 765-9630-

ISO 11568-2, Financial services — Key management (retail) — Part 2: Symmetric ciphers, their key management and life cycle

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 8583-1 and the following apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

ISO Online browsing platform: available at https://www.iso.org/obp

— IEC Electropedia: available at https://www.electropedia.org/

3.1

algorithm

specified mathematical process for computation or set of rules which, if followed, will give a prescribed result

3.2

authentication key

cryptographic key used for authentication

3.3

beneficiary

ultimate party to be credited or paid as a result of a transfer

Note 1 to entry: There can be more than one beneficiary.

3.4

block cipher

algorithm (3.1) for computing a function which maps a fixed-length string of bits and a secret key to another string of bits with the same fixed length

3.5

checksum

fixed-length string of bits calculated from a message of arbitrary length, such that it is unlikely that a change of one or more bits in the message will produce the same string of bits, thereby aiding detection of accidental modification

3.6

cryptoperiod

defined period of time during which a specific cryptographic key is authorized for use or during which the cryptographic keys in a given system may remain in effect

3.7

date MAC computed

DMC

date on which the sender computed the *message authentication code (MAC)* (3.10)

Note 1 to entry: The DMC can be used to synchronize the authentication process through selection of the proper key.

3.8

encipherment

<u>SO 16609:2022</u>

(reversible) transformation of data by a cryptographic *algorithm* (3.1) with a cryptographic key in order to produce ciphertext, i.e. to hide the information content of the data

3.9

identifier for authentication key

IDA

field that identifies the key to be used in authenticating the message

3.10

message authentication code

MAC

cryptographic check sum on data that uses a symmetric key to detect both accidental and intentional modification of data

3.11

MAC algorithm

keyed cryptographic *algorithm* (3.1) that produces a fixed-length string of bits – the *message authentication code* (*MAC*) (3.10) – from a message of arbitrary length, such that it is not feasible to compute the MAC without knowledge of the key

3.12

message authentication element

element that is to be protected by authentication

3.13

message element

contiguous group of bytes designated for a specific purpose

3.14 message identifier MID

systems trace audit number (deprecated)

field used uniquely to identify a financial message or transaction (e.g. sending bank's transaction reference) within a given context [e.g. date MAC computed (DMC)]

Note 1 to entry: In ISO 8583-1, the MID is referred to as the systems trace audit number (STAN), which it supersedes.

3.15

receiver

party intended to receive the message

3.16

sender

party responsible for, and authorized to, send a message

3.17

universal hash function

function mapping strings of bits to fixed-length strings of bits, indexed by a parameter called the key, satisfying the property that for all distinct inputs, the probability over all keys that the outputs collide is small

[SOURCE: ISO/IEC 9797-3:2011, 3.6, modified — Note 1 to entry removed.]

3.18

value date

date on which funds are to be at the disposal of the beneficiary

4 **Principles**

<u>SO 16609:2022</u>

https://standards.iteh.ai/catalog/standards/sist/39f261c8-27bb-4c95-9c30-

4.1 Protection of authentication keys^{24/iso-16609-2022}

Authentication keys are secret cryptographic keys that have been previously established by the sender and receiver and which are used by the MAC algorithm. Keys shall be managed in accordance with ISO 11568-1 and ISO 11568-2.

4.2 Message authentication elements

The MAC calculation shall include those data elements which require protection against fraudulent alteration. For messages, this is agreed between sender and receiver. Subject to bilateral agreement, the MAC calculation may also cover data elements not transmitted in a message (e.g. padding bits or data computable by both parties from information already shared).

The choice of data to be included in the MAC will depend on the specific application. When the following elements appear, they should be included in the calculation of the MAC:

- a) transaction amount;
- b) currency;
- c) identifier for authentication key (IDA);
- d) identification of payer and beneficiary and/or, if appropriate, their payment agent's value date;
- e) message identifier (MID);
- f) date and time;

g) indication as to the disposition of the transaction.

NOTE Integrity protection applies only to the selected message authentication elements. Other parts of the message can be subject to undetected alterations. It is important that users ensure the integrity of data presentation.

4.3 Detection of duplication, loss or sequence errors

A mechanism should be implemented to detect duplication or loss, or messages arriving out of sequence. Without recourse to further message exchanges, the recipient can only detect the replay of a previous transaction if able to identify transactions uniquely and should then check that such unique identifying information has not already occurred. To detect sequence errors, messages should be identifiable as being in a sequence. Furthermore, in order to detect loss, transactions should be identifiable as being in a defined sequence, predictable by the recipient. These conditions are achieved by involving in the MAC computation some elements (i.e. message elements or key elements) that are unique to the transaction and that relate it uniquely to the previous transaction. Examples of methods to achieve this include the following:

a) Incorporate in the MAC calculation a unique transaction reference that does not repeat within the lifetime of the system. To detect loss, the reference would need to change in a defined sequence that is known by the recipient who calculates this value and compares it with the received value.

EXAMPLE The reference will include sender ID, recipient ID, key ID and transaction number, where the transaction number increases by one for each transaction.

- b) Incorporate in the MAC calculation an MID, i.e. a value that does not repeat before either:
 - the change of date, i.e. date MAC computed (DMC) (usable if the date is included in MAC elements); or
 - the expiration of the cryptoperiod of the key used for authentication.

The MID can consist of a unique sending bank's transaction reference number in a fixed format message as an MID. A method of protection is described in <u>Annex A</u>. The MID can either contain the DMC or be a separate field. To simplify detection of loss, the MID could increase in a defined sequence.

- c) Use a unique key per transaction where the key of one transaction is derived from that of the previous transaction (see ISO 11568¹).
- d) Use a unique key per transaction where the key of each transaction is derived from a unique transaction reference that does not repeat within the lifetime of the base key.
- e) Combine the above techniques.

5 Procedures for message authentication

5.1 MAC generation

A MAC shall be generated by processing in an agreed order (e.g. the sequence in which they appear in a message) those elements to be authenticated (see <u>4.2</u>). The generation mechanism shall use an authentication key, which is a secret between the two correspondents. This process creates the MAC, which shall then be included with the original text. To retain integrity of stored data the MAC is unambiguously associated with the respective data.

¹⁾ Under preparation. Stage at the time of publication: ISO/FDIS 11568:2022.

5.2 MAC placement

The MAC shall be either:

- a) placed in the message, in an additional field specified for the transport of the MAC;
- b) appended to the data portion of the message, if there is no specified MAC field; or
- c) retained in unambiguous association with the data requiring integrity protection.

5.3 MAC verification

A reference MAC is that which is received in the message to be verified, or that which is associated with the stored data.

When verifying a MAC it shall be recomputed using the message authentication elements, an identical authentication key and an identical algorithm. The result is then compared with the reference MAC. Authenticity of the elements to be authenticated (and the message source if applicable) shall be considered to have been confirmed when the computed MAC agrees with the reference MAC.

A MAC is not included in the algorithm computation.

Verification of the MAC is sensitive to the sequence in which the message authentication elements are processed (i.e. a change in the sequence of message authentication elements after the MAC is generated will result in a failure to authenticate).

5.4 Approved authentication mechanisms based on the ISO/IEC 9797 series

5.4.1 General

This document approves MAC algorithms specified in 5.4.2, 5.4.3 and 5.4.4, which shall be used for message authentication. ds. iteh.ai/catalog/standards/sist/39f261c8-27bb-4c95-9c30-

3d7f017cc4/iso-16609-2022

5.4.2 Approved message authentication mechanisms based on ISO/IEC 9797-1

ISO/IEC 9797-1 specifies six MAC algorithms that use a secret key and an *n*-bit block cipher to calculate an *m*-bit MAC, and which are based upon the cipher block chaining (CBC) mode of operation of a block cipher.

- MAC algorithm 1 is a simple CBC-MAC using a single key.
- MAC algorithm 2 is a variant on algorithm 1, with an additional final transformation using a second key.
- MAC algorithm 3 is a variant on algorithm 1, ending with two additional transformations. The
 penultimate transformation uses a second key and the final transformation uses the first key.
- MAC algorithm 4 is a variant on algorithm 2, with an additional initial transformation using the second key.
- MAC algorithm 5 is commonly known as CMAC.
- MAC algorithm 6 is a variant of algorithm 1, using a final iteration with a separate key, so doubling the MAC algorithm key length.

<u>Table 1</u> shows the authentication mechanisms based on ISO/IEC 9797-1 approved for the generation of MACs for financial services.