

SLOVENSKI STANDARD
oSIST prEN IEC 63409-3:2024
01-junij-2024

Povezava fotonapetostnih sistemov za proizvodnjo električne energije z omrežjem
- Preskušanje opreme za pretvorbo električne energije - 3. del: Osnovne operacije

Photovoltaic power generating systems connection with grid - Testing of power conversion equipment - Part 3: Basic operations

iTeh Standards
(<https://standards.iteh.ai>)

Ta slovenski standard je istoveten z: prEN IEC 63409-3:2024

[oSIST prEN IEC 63409-3:2024](https://standards.iteh.ai/catalog/standards/sist/c8622dea-932b-48f1-8361-b81c924540e7/osit-pren-iec-63409-3-2024)

<https://standards.iteh.ai/catalog/standards/sist/c8622dea-932b-48f1-8361-b81c924540e7/osit-pren-iec-63409-3-2024>

ICS:

27.160	Sončna energija	Solar energy engineering
29.240.01	Omrežja za prenos in distribucijo električne energije na splošno	Power transmission and distribution networks in general

oSIST prEN IEC 63409-3:2024

en,fr,de

PROJECT NUMBER:

IEC 63409-3 ED1

DATE OF CIRCULATION:

2024-03-29

CLOSING DATE FOR VOTING:

2024-06-21

SUPERSEDES DOCUMENTS:

82/2114/CD, 82/2153A/CC

IEC TC 82 : SOLAR PHOTOVOLTAIC ENERGY SYSTEMS

SECRETARIAT:

United States of America

SECRETARY:

Mr George Kelly

OF INTEREST TO THE FOLLOWING COMMITTEES:

TC 8, TC 22, TC 57, TC 69, TC 77, TC 88, ACTAD

PROPOSED HORIZONTAL STANDARD:

Other TC/SCs are requested to indicate their interest, if any, in this CDV to the secretary.

FUNCTIONS CONCERNED:

 EMC ENVIRONMENT QUALITY ASSURANCE SAFETY SUBMITTED FOR CENELEC PARALLEL VOTING NOT SUBMITTED FOR CENELEC PARALLEL VOTING**Attention IEC-CENELEC parallel voting**

The attention of IEC National Committees, members of CENELEC, is drawn to the fact that this Committee Draft for Vote (CDV) is submitted for parallel voting.

The CENELEC members are invited to vote through the CENELEC online voting system.

iTeh Standards**standards.iteh.ai)****Document Preview**

oSIST prEN IEC 63409-3:2024

This document is still under study and subject to change. It should not be used for reference purposes.

Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Recipients of this document are invited to submit, with their comments, notification of any relevant "In Some Countries" clauses to be included should this proposal proceed. Recipients are reminded that the CDV stage is the final stage for submitting ISC clauses. (SEE [AC/22/2007](#) OR [NEW GUIDANCE DOC](#)).

TITLE:

Photovoltaic power generating systems connection with grid – Testing of power conversion equipment – Part 3: Basic operations

PROPOSED STABILITY DATE: 2030

NOTE FROM TC/SC OFFICERS:

This project was discussed and supported by WG6 during their meeting in 2023-10.

CONTENTS

FOREWORD	6
INTRODUCTION	8
1 Scope	10
2 Normative references	10
3 Terms and definitions	11
4 General requirements	13
4.1 General conditions for testing	13
4.1.1 Sequence of tests	13
4.1.2 Test equipment conditions	13
4.1.3 Manufacturer's stated tolerance	13
4.1.4 Required setting for EUT	13
4.1.5 PCE firmware used during the test	13
4.1.6 Reporting the test results	14
4.2 Test setup	14
4.3 Parameters used in the tests	14
5 Test procedures	16
5.1 Steady State characteristics	16
5.1.1 General	16
5.1.2 Active power and reactive power	16
5.1.3 Operable voltage	17
5.1.4 Reactive power capability for low DC voltage	19
5.1.5 Operable frequency	20
5.1.6 Power factor	21
5.2 Transient-response characteristics	22
5.2.1 General	22
5.2.2 Active power control	22
5.2.3 Reactive power control	23
5.2.4 Grid voltage variation	24
5.2.5 Grid voltage phase angle variation	26
5.2.6 Grid voltage unbalance	27
5.2.7 Grid frequency variation	28
Annex A (normative) Summary of test items	31
Annex B (normative) Format for recording test results	33
B.1 Steady State characteristics	33
B.1.1 Active power and reactive power (See 5.1.2)	33
B.1.2 Operable voltage (See 5.1.3) and Reactive power capability for low DC voltage (See 5.1.4)	35
B.1.3 Operable frequency (See 5.1.5)	35
B.1.4 Power factor (See 5.1.6)	36
B.2 Transient-response characteristics	36
B.2.1 Active power control (See 5.2.2)	36
B.2.2 Reactive power control (See 5.2.3)	37

B.2.3	Grid voltage variation (See 5.2.4).....	38
B.2.4	Grid voltage phase angle variation (See 5.2.5).....	39
B.2.5	Grid voltage unbalance (See 5.2.6).....	40
B.2.6	Grid frequency variation (See 5.2.7).....	41
Annex C (normative)	Requirements for testing environments	43
C.1	Outline	43
C.2	Recommended specification of power supplies.....	44
C.3	Recommended specification of measuring instruments.....	45
Annex D (normative)	Supplemental information for settling time measurement	48
Annex E (normative)	Sign conventions for measurements of voltage, current and power	49
E.1	General	49
E.2	Reference polarity and direction	49
E.2.1	Reference polarity of voltage	49
E.2.2	Reference direction of current	49
E.2.3	Sign conventions for measurements of voltage, current and power	50
E.3	Reference frame of active and reactive power	50
E.4	Physical meanings of the power flows of generators in regional standards	54
Annex F (normative)	Grid voltage unbalance – test condition	57
F.1	Outline	57
F.2	Causes and definitions of Unbalanced grid voltage.....	57
F.3	Test conditions.....	57
Annex G (informative)	Phase angle variation of grid voltage – alternative test setup	58
G.1	Outline	58
G.2	Alternative test setup and test procedure	58
Annex H (informative)	Fundamental principle of reactive power reduction with lower DC voltage	59
H.1	Outline	59
H.2	Controllability limit.....	59
Annex I (informative)	Grid support functions covered in IEC 63409 series	63
Bibliography	65
Figure 1- Scopes of IEC 63409 Series.....	9	
Figure 2 – Example of step response	13	
Figure 3 – Example of a test setup	14	
Figure 4– Example operational parameters in P-Q capability curve of PCE in Producer Reference Frame (PRF)	16	
Figure 5 – Example of settling time measurement for grid voltage variation test	26	
Figure 6 – Example of settling time measurement for grid frequency variation.....	30	
Figure B.1 – P-Q capability curve showing Active power and reactive power test results and Power factor test results (example)	34	
Figure B.2 – Active power control test waveform example when active power setpoint was changed from 100 %	37	
Figure B.3 – Reactive power control test waveform example when reactive power setpoint was changed from 52,7 % to 0 %	38	

Figure B.4 – Grid voltage variation test waveform example when AC voltage was changed from 100 % to 110 %	39
Figure B.5 – Phase angle of grid voltage change test waveform example (10 degree step change was applied to AC voltages for illustrative purpose)	40
Figure B.6 – Grid voltage unbalance test waveform example when negative sequence voltage was applied to AC voltages	41
Figure B.7 – Grid frequency variation test waveform example when AC frequency was changed from 50 Hz to 50,5 Hz	42
Figure C.1 – Example of a testing environment	43
Figure D.1 – Example of settling time measurement for grid voltage variation in case the settled power is different from the original steady state	48
Figure E.1 – Reference polarity of voltage.....	49
Figure E.2 – Reference polarity of current	49
Figure E.3 – Reference polarity and direction for the measurements for DER.....	50
Figure E.4 – Reference polarity and direction for the measurements for Load	50
Figure E.5 – Rotating vector voltage and current for load	51
Figure E.6 – Rotating vector voltage and current for DER	51
Figure E.7 – Complex power for load.....	52
Figure E.8 – Complex power for DER	53
Figure E.9 – Power quadrants for load	53
Figure E.10 – Power quadrants for DER.....	54
Figure G.1 – Configuration of an alternative test setup	58
Figure H.1 – Basic configuration of a power conversion equipment	59
Figure H.2 – EUT voltage and current vector diagram and operating point depicted in the PQ curve with sufficient U_{ac} (over-excited)	61
Figure H.3 – EUT voltage and current vector diagram and operating point depicted in the PQ curve with small U_{ac} (over-excited)	61
Figure H.4 – EUT voltage and current vector diagram and operating point depicted in the PQ curve with small U_{ac} (under-excited)	61
Figure H.5 – EUT voltage and current vector diagram and operating point depicted in the PQ curve during inflexion operating point (over-excited)	62
Table 1 – Parameters defined for the tests	15
Table 2: Test conditions for operable voltage test	19
Table 3: Test conditions for operable frequency test	21
Table 4 – Test cases for grid voltage unbalance.....	28
Table A.1 – Test items for Steady state characteristics (example)	31
Table A.2 – Test items for Transient-response characteristics (example)	32
Table B.1 – Record of Active power and reactive power test (example).....	33
Table B.2 – Record of Operable voltage test (example).....	35
Table B.3 – Record of Operable frequency test (example).....	35
Table B.4 – Record of Power factor test (example).....	36

Table B.5 – Record of Active power control test (example).....	36
Table B.6 – Record of Reactive power control test (example).....	37
Table B.7 – Record of Grid voltage variation test (example)	38
Table B.8 – Record of Grid voltage phase angle variation test (example)	39
Table B.9 – Record of Grid voltage unbalance test (example)	40
Table B.10 – Record of Grid frequency variation test (example)	41
Table C.1 – Required functions for power supplies.....	43
Table C.2 –Electrical quantity measured with measuring instruments/devices	44
Table C.3 – Recommended specifications for power supplies.....	45
Table C.4 – Recommended specifications of power quality measurement	46
Table C.5 – Recommended specifications of waveform monitoring and recording device.....	46
Table E.1 – Physical meanings of the power flows of loads	54
Table E.2 – Physical meanings of the power flows of generators.....	54
Table E.3 – Physical meanings of the power flows of generators in Japan.....	55
Table E.4 – Physical meanings of the power flows of generators in IEEE 1547.1.....	55
Table E.5 – Physical meanings of the power flows of generators in EN 50549-10.....	55
Table E.6 – Physical meanings of the power flows of generators in AS/NZS 4777.2	55
Table I.1 – Grid support functions covered in IEC 63409 series.....	63

iTeh Standards (<https://standards.iteh.ai>) Document Preview

[oSIST prEN IEC 63409-3:2024](#)

<https://standards.iteh.ai/catalog/standards/sist/c8622dea-932b-48f1-8361-b81c924540e7/osist-pren-iec-63409-3-2024>

INTERNATIONAL ELECTROTECHNICAL COMMISSION

**PHOTOVOLTAIC POWER GENERATING SYSTEMS CONNECTION
WITH THE GRID –
TESTING OF POWER CONVERSION EQUIPMENT –**

Part 3: Basic operations

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC **[had/had not]** received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at <https://patents.iec.ch>. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC PHOTOVOLTAIC POWER GENERATING SYSTEMS CONNECTION WITH THE GRID – TESTING FOR POWER CONVERSION EQUIPMENT – Part 3: Basic operations has been prepared by IEC technical committee 82.

The text of this International Standard is based on the following documents:

Draft	Report on voting
82/XX/FDIS	82/XX/RVD

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn, or
- revised.

The National Committees are requested to note that for this document the stability date is **20XX**.

THIS TEXT IS INCLUDED FOR THE INFORMATION OF THE NATIONAL COMMITTEES AND WILL BE DELETED AT THE PUBLICATION STAGE.

Document Preview

[oSIST prEN IEC 63409-3:2024](https://standards.iteh.ai/catalog/standards/sist/c8622dea-932b-48f1-8361-b81c924540e7/osit-pr-en-iec-63409-3-2024)

<https://standards.iteh.ai/catalog/standards/sist/c8622dea-932b-48f1-8361-b81c924540e7/osit-pr-en-iec-63409-3-2024>

1 INTRODUCTION

2 **Background**

3 TC82 has been making efforts to contribute the standardization of DER connection with the grid. In 2016,
4 TC82 joined TC8/JWG10 to harmonize with utility power system operation requirements. In parallel with
5 such a liaison work, TC82 has also been preparing the standardization of testing requirements to
6 evaluate grid connection requirements for power conversion equipment (PCE) for use in PV systems
7 since 2016.

8 **Purpose**

9 This document proposes the Part 3 of this series which gives test procedures for confirming the basic
10 operation characteristics of PCE.

11 The main purpose of Part 3 is to confirm basic power conversion control of PCE at steady state condition
12 and at transient response. Figure 1 shows the relationships of the seven parts in IEC 63409. Part 3 is
13 focused on the control functions in PCE in respect of power conversion. Power flow control and grid
14 support functions will generate active and reactive power commands according to the grid conditions.
15 The commands are sent to power conversion control, and power conversion control will make current or
16 voltage references, which manipulate signals for the switching devices.

17 It is important to confirm the basic control performance of the PCE as power conversion equipment
18 without power flow control and grid support functions so that additional functions such as power flow
19 control and grid support functions can perform appropriately.

20 The responses of PCE against abnormal grid conditions will be covered in Part 4 (IEC 63409-4).

21 Power quality of the PCE output will be covered in Part 5 (IEC 63409-5).

22 Power flow control and grid support functions will be covered in Part 6 (IEC 63409-6).

23 Responses against commands through communication will be covered Part 7 (IEC 63409-7).

24

[oSIST prEN IEC 63409-3:2024](https://standards.iteh.ai/catalog/standards/sist/c8622dea-932b-48f1-8361-b81c924540e7/osit-pr-en-iec-63409-3-2024)

<https://standards.iteh.ai/catalog/standards/sist/c8622dea-932b-48f1-8361-b81c924540e7/osit-pr-en-iec-63409-3-2024>

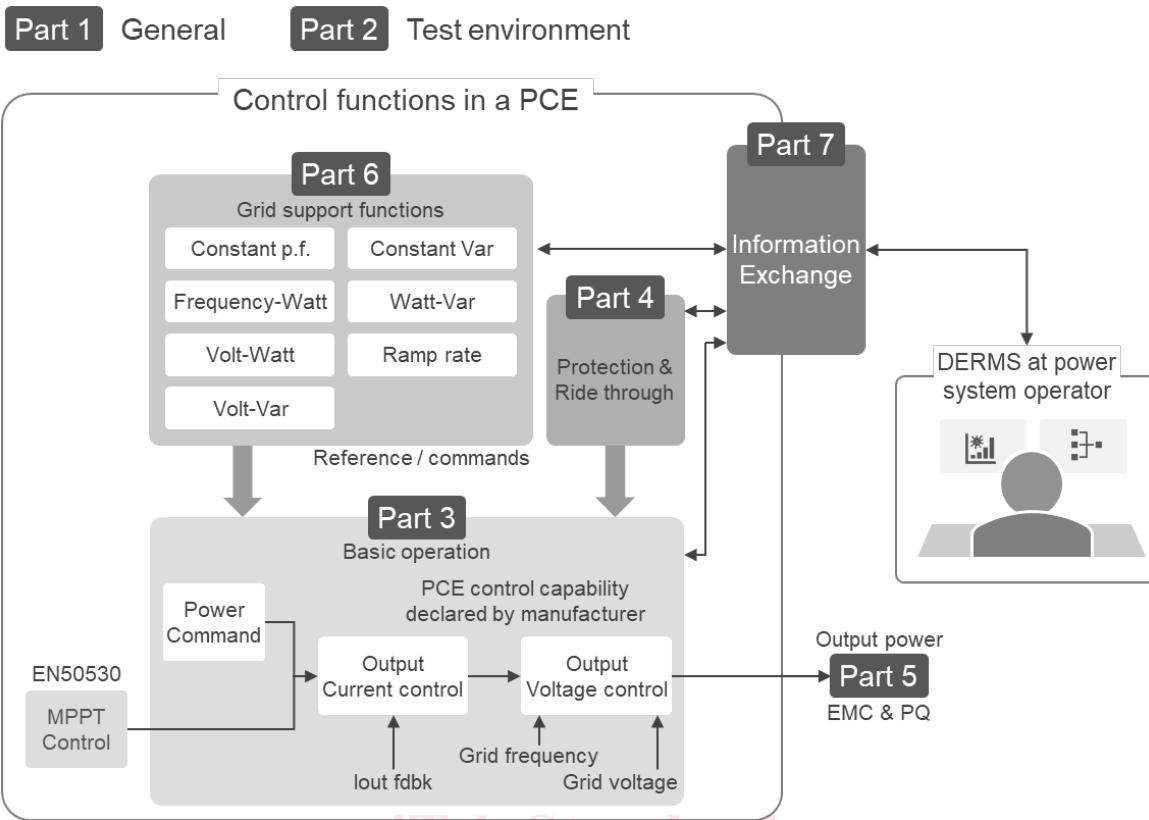


Figure 1- Scopes of IEC 63409 Series
<https://standards.iteh.ai>
 Document Preview

[oSIST prEN IEC 63409-3:2024](https://standards.iteh.ai/catalog/standards/sist/c8622dea-932b-48f1-8361-b81c924540e7/osist-pren-iec-63409-3-2024)

<https://standards.iteh.ai/catalog/standards/sist/c8622dea-932b-48f1-8361-b81c924540e7/osist-pren-iec-63409-3-2024>

28 **PHOTOVOLTAIC POWER GENERATING SYSTEMS CONNECTION WITH THE GRID**29 **– TESTING OF POWER CONVERSION EQUIPMENT**30 **Part 3: Basic operations**32 **1 Scope**

33 This document specifies test procedures for confirming the basic operational characteristics of power
 34 conversion equipment (PCE) for use in photovoltaic (PV) power systems with or without energy storage.
 35 The basic operational characteristics are the capability of the PCE before any limitations due to internal
 36 settings are applied to the PCE to meet specific grid support functions or specific behaviours against
 37 abnormal changes.

38 This document covers the testing of following items:

39 a) Steady state characteristics

40 Test procedures to confirm operable range of PCE at steady state condition are described. The operable
 41 ranges in apparent power, active power, reactive power, power factor, grid voltage and grid frequency
 42 shall be confirmed according to the test procedures.

43 b) Transient-response characteristics

44 Test procedures to confirm PCE's response against a change of operational condition are described.

45 Transient-response characteristics to be confirmed are response behaviours against;

- 46 • Active power set point change and reactive power set point change
- 47 • Grid voltage change, phase angle change, voltage unbalance and frequency change

48 This document only considers the changes within normal (continuous) operable ranges. Therefore, the
 49 behaviours against abnormal changes and grid support functions are out of the scope and are covered
 50 in other parts of this series of International Standards.

51 oSIST prEN IEC 63409-3:2024

52 <https://standards.iteh.ai/catalog/standards/sist/c8622dea-932b-48f1-8361-b81c924540e7/osist-pren-iec-63409-3-2024>

52 **2 Normative references**

53 The following documents are referred to in the text in such a way that some or all of their content
 54 constitutes requirements of this document. For dated references, only the edition cited applies. For
 55 undated references, the latest edition of the referenced document (including any amendments) applies.

56 IEC TS 61836:2016, *Solar photovoltaic energy systems – Terms, definitions and symbols*

57 IEC TS 62786-1:2023, *Distributed energy resources connection with the grid - Part 1: General
 58 requirements*

59 IEC 61850-7-420:2021, *Communication networks and systems for power utility automation - Part 7-420: Basic
 60 communication structure - Distributed energy resources and distribution automation logical nodes*

61 IEC 60375:2018, *Conventions concerning electric circuits*

62 IEC 61557-12:2018+AMD1:2021, *Amendment 1 - Electrical safety in low voltage distribution systems up
 63 to 1 000 V AC and 1 500 V DC - Equipment for testing, measuring or monitoring of protective measures
 64 - Part 12: Power metering and monitoring devices (PMD)*

65 IEC 62053-23:2020, *Electricity metering equipment - Particular requirements - Part 23: Static meters for*
 66 *reactive energy (classes 2 and 3)*

67 IEC TS 62910:2020, *Utility-interconnected photovoltaic inverters - Test procedure for under voltage ride-*
 68 *through measurements*

69 IEC 61000-2-2:2002+A1:2017+A2:2018, *Electromagnetic compatibility (EMC) - Environment -*
 70 *Compatibility levels for low-frequency conducted disturbances and signalling in public low-voltage power*
 71 *supply systems*

72 IEC 61000-4-27:2000+AMD1:2009, *Amendment 1 - Electromagnetic compatibility (EMC) - Part 4-27:*
 73 *Testing and measurement techniques - Unbalance, immunity test for equipment with input current not*
 74 *exceeding 16 A per phase*

75 IEC 61000-4-30:2015+AMD1:2021, *Electromagnetic compatibility (EMC) - Part 4-30: Testing and*
 76 *measurement techniques - Power quality measurement methods*

77 **3 Terms and definitions**

78 ISO and IEC maintain terminological databases for use in standardization at the following addresses:
 79 IEC Electropedia: available at <http://www.electropedia.org/>
 80 ISO Online browsing platform: available at <http://www.iso.org/obp>

81

82 **3.1**
 83 **EUT**
 84 Equipment under test

85 **3.2**
 86 **power conversion equipment**
 87 **PCE**
 88 electrical device converting one kind of electrical power from a voltage or current source into another
 89 kind of electrical power with respect to voltage, current and frequency

90 [SOURCE: IEC 62109-1:2010, 3.66] [oSIST prEN IEC 63409-3:2024](http://www.electropedia.org/)

<https://standards.iteh.ai/catalog/standards/sist/c8622dea-932b-48f1-8361-b81c924540e7/osist-pren-iec-63409-3-2024>

91 **3.3**
 92 **grid support functions**
 93 PCE's functions which controls active power and / or reactive power according to pre-defined
 94 characteristics or set point command to support stabilizing the power quality of the grid the PCE is
 95 connected to

96 **3.4**
 97 **maximum power point tracking**
 98 **MPPT**
 99 PCE's control function which tracks the maximum DC power point in the PV module's power generation
 100 characteristics

101 **3.5**
 102 **steady state**
 103 equilibrium state in which the relevant characteristics remain constant with time

104 [SOURCE: IEV 103-05-01, modified – the original definition has been changed to adopt usage in PCE
 105 testing]

106 **3.6**107 **response time**108 elapsed time from the start of a step change or start of event until the observed value first time enters
109 the predefined tolerance band of the target value

110 Note: See Figure 2.

111 [SOURCE: IEC 61400-21-1: 2019]

112 **3.7**113 **settling time**114 elapsed time from the start of a step change event until the observed value continuously stays within
115 the predefined tolerance band of the target value

116 Note: See Figure 2.

117 [SOURCE: IEC 61400-21-1: 2019]

118 **3.8**119 **rise time**120 time from when the observed value reaches 10 % of the step change until the observed value reaches
121 90 % of the step change

122 Note: See Figure 2.

123 [SOURCE: IEC 61400-21-1: 2019]

124 **3.9**125 **overshoot**

126 difference between the maximum value of the response and the steady-state final value

127 Note: See Figure 2.

128 [SOURCE: IEC 61400-21-1: 2019]

129 **3.10**130 **reaction time**131 elapsed time from test command issued until the change in amplitude reaches 10 % of the measured
132 output variable of the step height

oSIST prEN IEC 63409-3:2024

133 Note: See Figure 2.

134 [SOURCE: IEC 61400-21-1: 2019]

135 **3.11**136 **tolerance**

137 permitted deviation between the declared value of a quantity and the measured value

138

139 [SOURCE: IEV 411-36-19]

140 **3.12**141 **tolerance band**

142 acceptable deviation range of measured signal from the defined target value

143

144 [SOURCE: IEC 61400-21-1: 2019]

145 **3.13**146 **accuracy**147 quality which characterizes the ability of a measuring instrument to provide an indicated value close to
148 a true value of the measurand

149 [SOURCE: IEV 311-06-08]