INTERNATIONAL STANDARD

First edition 2022-08

Radiators and convectors — Methods and rating for determining the heat output

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 24365:2022</u> https://standards.iteh.ai/catalog/standards/sist/c5574b20-4d21-4373-a032ae5a0f172001/iso-24365-2022

Reference number ISO 24365:2022(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 24365:2022

https://standards.iteh.ai/catalog/standards/sist/c5574b20-4d21-4373-a032ae5a0f172001/iso-24365-2022

COPYRIGHT PROTECTED DOCUMENT

© ISO 2022

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Contents

Page

Forew	ord			v					
Introd	luctio	n		vi					
1	Scope	9							
2	Norm	- rmative references							
2	Terms definitions symbols and units								
3	3.1 Terms and definitions								
	3.2	Symbo	and units of measurement	1					
4	Coloritor of hosting applications to he tests d								
4	Selection of neating appliances to be tested								
	4.2	Select	ion of models to be tested for determining the thermal outputs of a type						
		4.2.1	Selection of models to be tested when the variable characteristic dimension						
			is the overall height and the cross-section of the variable part is constant	6					
		4.2.2	Selection of models to be tested when the variable characteristic dimension	_					
	4.2	The set in	for the type is other than the overall height	7					
	4.3 1.1.	Supple	g samples submission and identification	ð 11					
_	т. т	Supple		11					
5	Laboratory equipment and test methods								
	5.2	Appar		11 11					
		5.2.1	Test system	11					
		5.2.2	Reference test installation						
		5.2.3	Master radiators	14					
		5.2.4	Verification of test installation repeatability and reproducibility	18					
		5.2.5	Accuracy of measuring instruments and devices						
	5.2.6 Calibration of measuring instruments								
	5.3 5.4	Test m	aration for thermal output test						
	J.T	5.4.1	General						
		5.4.2	Weighing method						
		5.4.3	Electric method	25					
		5.4.4	Measurements and calculations	25					
	5.5	5.4.5	Determination of the characteristic equation						
		Prese	Standard thermal output of a model						
		5.5.1	Determination of the catalogue outputs of a type made at variable water	29					
		0.0.2	flow rate						
6	Test	report		30					
Annex	A (no	rmative	Master radiators dimensional verification	33					
Annos	P (inf	Formativ	vo) Determination of processing drop	20					
Annex			Least agreed regression for a model						
Annex		mative) Least squares regression for a model	43					
Annex	D (n regre	ormativ ession	e) Analysis of test results by the method of least squares multiple	44					
Annex	E (no	rmative) Specimen of the test report						
Annex	F (i	nforma	tive) Apparatus and method for checking the bulk temperature	40					
	meas	uring d							
Annex	G (inf	ormativ	re) Examples of typical appliances according to <u>Table 4</u>	51					
Annex	H (no	rmative) Determination of the $arPsi_{M}$ values of the master radiators primary set	61					
Annex	I (nor	mative)	Calculation method for determining the energy calculation parameters	62					

Bibliography 64

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 24365:2022</u> https://standards.iteh.ai/catalog/standards/sist/c5574b20-4d21-4373-a032ae5a0f172001/iso-24365-2022

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 205, Building environment design.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

Introduction

This document results from the recognition that the heating appliances falling into the field of application hereinafter stated are traded on the basis of their thermal output.

To evaluate and compare different appliances it is therefore necessary to refer to a single stipulated value, hereinafter called the standard rated thermal output.

In addition, for low temperature systems, a standard low temperature thermal output is given.

The standard thermal outputs (standard rated thermal output and standard low temperature thermal output) are a defined value taken from the characteristic equation.

The pre-requisites of the standard thermal outputs, as defined by this document, are the following:

- to be representative of the actual output of the appliance in different operating conditions;
- to be reproducible within the tolerances defined by this document, taking into account the state of measuring techniques;
- to be representative of the thermal outputs, obtainable under the same test conditions, of any identical sample taken out of the current production (within the tolerances defined by this document, taking into account the state of measuring techniques and methods of manufacture).

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 24365:2022</u> https://standards.iteh.ai/catalog/standards/sist/c5574b20-4d21-4373-a032ae5a0f172001/iso-24365-2022

Radiators and convectors — Methods and rating for determining the heat output

1 Scope

This document defines procedures for determining the standard thermal outputs and other characteristics of radiators and convectors installed in a permanent manner in construction works, fed with water or steam at temperatures below 120 °C, supplied by a remote energy source.

This document specifies the laboratory arrangements and testing methods to be adopted, the admissible tolerances, the criteria for selecting the samples to be tested and for verifying the conformity of the current production with the samples tested at the initial test.

This document also defines the additional common data that the manufacturer shall provide with the product in order to ensure the correct application of the products.

This document does not apply to fan-assisted radiators, fan-assisted convectors and trench convectors or to independent heating appliances.

2 Normative references ANDARD PREVIEW

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories

3 Terms, definitions, symbols and units

3.1 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at <u>https://www.electropedia.org/</u>

3.1.1

heating appliance

device having the purpose of transferring heat in order to provide specific temperature conditions inside buildings

3.1.2

independent heating appliance

self-contained *heating appliance* (3.1.1) which does not need to be connected to a remote energy source (e.g. a boiler) as it contains its own energy source (e.g. gas fired appliances, electric appliances, air to air heat pump appliances)

3.1.3

radiator

heating appliance (3.1.1) produced with different materials (e.g. steel, aluminium, cast-iron) and with different designs (e.g. plate type, column type, tube type, finned tube type), which emits heat by free convection and radiation

3.1.4

sectional heating appliances

heating appliance (3.1.1) manufactured in sections of identical design and traded in this form, which can be joined together into modular assemblies so that the desired output can be obtained

Note 1 to entry: Mainly applied to *radiators* (3.1.3).

3.1.5

convector

heating appliance (3.1.1) which emits heat almost entirely by free convection

Note 1 to entry: A convector comprising at least a heat emitter and a casing which provides an unheated convective chimney of defined height.

3.1.6

skirting convector

special *convector* (3.1.5) of limited height running along the base of an interior wall

3.1.7

dry heating surface

secondary heating surface portion of the heat emitting surface which is in contact with air only (e.g. fins projecting from the wet surface)

3.1.8

family of heating appliances

<u>SO 24365:2022</u>

group of *heating appliances* (3.1.1) of similar design and construction and of identical material, positions of primary fluid connections and other related variables that particularly affect the conditions of flow of the primary fluid within the *heating appliance* (3.1.1)

3.1.9

model

heating appliance (3.1.1) of defined height, length and depth within a type

3.1.10

range of heights

difference between the maximum and minimum height of the models (3.1.9) in a type

3.1.11

module

<heating appliance>

reference length of the useful portion of a *heating appliance* (3.1.1)

Note 1 to entry: The module coincides with:

- the section, in the case of sectional heating appliances (3.1.4);
- a length of 1 m, in the case of non-sectional heating appliances (3.1.1);
- a finned length of 1 m, in the case of finned tube *convectors* (3.1.5).

3.1.12

sample

representative *heating appliance* (3.1.1) used for the determination of one or more of the performance characteristics

3.1.13

inlet water temperature

bulk temperature of the water entering the heating appliance (3.1.1)

3.1.14

outlet water temperature

bulk temperature of the water leaving the *heating appliance* (3.1.1)

3.1.15

temperature drop

difference between inlet (3.1.13) and outlet water temperature (3.1.14)

3.1.16

mean water temperature

arithmetical mean of *inlet* (3.1.13) and *outlet water temperature* (3.1.14)

3.1.17

reference air temperature

air temperature measured on the vertical line at the centre of the test booth, $0{,}75\ {\rm m}$ above the floor level

3.1.18

excess temperature

difference between mean water temperature (3.1.16) and reference air temperature (3.1.17)

3.1.19

standard excess temperature

excess temperature (3.1.18) of 50 K as determined in the standard conditions

Note 1 to entry: *Inlet water temperature* (3.1.13) of 75 °C, *outlet water temperature* (3.1.14) of 65 °C and *reference air temperature* (3.1.17) of 20 °C.

3.1.20 https://standards.iteh.ai/catalog/standards/sist/c5574b20-4d21-4373-a032-ac5a0f172001/iso-24365-2022

measured value at the test site

3.1.21

water flow rate

amount of water flowing through the *heating appliance* (3.1.1) per unit of time

3.1.22

standard water flow rate

water flow rate (3.1.21) relating to standard test conditions

3.1.23

standard rated thermal output

thermal output of a *heating appliance* (3.1.1) defined at 50 K *excess temperature* (3.1.18)

3.1.24

standard low temperature thermal output

thermal output of a *heating appliance* (3.1.1) defined at 30 K *excess temperature* (3.1.18)

3.1.25

characteristic equation

power function with a specific characteristic exponent that gives the thermal output as a function of the *excess temperature* (3.1.18) at constant *water flow rate* (3.1.21)

3.1.26

standard characteristic equation

characteristic equation (3.1.25) which is valid for *standard water flow rate* (3.1.22) and from which the standard thermal output can be found for the *standard excess temperature* (3.1.19) of 50 K

3.1.27 test installation combination of:

- test booth and other related parts, and
- measuring instruments and related equipment

3.1.28

test system combination of:

test installation (3.1.27), and

master radiators (3.1.34)

3.1.29

pressure drop

difference of pressure between water inlet and water outlet of the *heating appliance* (3.1.1)

3.1.30

supplementary test

test for the purpose of establishing the effect of minor technical modifications on the thermal output of radiators (3.1.3) that have already been tested

3.1.31

radiated heat output factor h STANDARD PREVIEW

Sk

assumed ratio between the radiation heat output and the overall heat output of the radiator (3.1.3), which is only valid for *air pressure* (3.1.20) correction purposes

3.1.32

exponent n_p exponent for the air pressure (3.1.20) correction of the measured heat output of the radiator (3.1.3)

3.1.33

emissivity

ε

ratio of energy radiated by a particular material to energy radiated by a black body at the same temperature

3.1.34

master radiator

sample (3.1.12) used for the calibration of test installations (3.1.27)

Note 1 to entry: Master radiators are used to determine repeatability and reproducibility of the results of the test installations (3.1.27) (see 5.2.3).

Symbols and units of measurement 3.2

Table 1 — Symbols, quanties and units of measurement

Quantity	Symbol	Unit
Thermal output	Φ	W
Standard thermal output	$\Phi_{\rm S}$	W
Modular thermal output	$\Phi_{\rm L}$	W
Reference value of a master radiator	Φ_0	W
Reference value of a primary set of master radiators for interlaboratory comparisons	Φ_{M}	W
Electrical method heat losses	Φ_{V}	W

Quantity	Symbol	Unit	
Electric power	P _{el}	W	
Thermodynamic temperature	Т	К	
Temperature	Т	°C	
Inlet water temperature	T_1	°C	
Outlet water temperature	T_2	°C	
Temperature drop	$T_1 - T_2$	К	
Mean water temperature	T _m	°C	
Reference room air temperature	T _r	°C	
Excess temperature	ΔT	К	
Specific heat capacity	C _p	J/kg•K	
Specific enthalpy	h	J/kg	
Inlet water enthalpy	h_1	J/kg	
Outlet water enthalpy	h ₂	J/kg	
Water flow rate	$q_{\rm m}$	kg/s	
Standard water flow rate	$q_{\rm ms}$	kg/s	
Pressure	р	kPa	
Maximum operating pressure/resistance to pressure	p _{max}	kPa	
Pressure drop IIII STANDARD PREVIEW	Δp	kPa	
Repeatability tolerance	<i>S</i> ₀	-	
Reproducibility tolerance	S _m	-	
Overall height of the heating appliance	Н	m	
Range of heights ISO 24365:2022	H _r	m	
Overall length of the heating appliance training standards/sist/c5574b20-4d21-4373	-a032 <u></u>	m	
Length of a section ae5a0f1/2001/iso-24365-2022	L_{S}	m	
Number of sections	N _S	-	
Thermal resistance	R	m ² •K/W	
Time interval	τ	S	
Radiated heat output factor	Sk	-	
Emissivity	Е	-	

 Table 1 (continued)

4 Selection of heating appliances to be tested

4.1 Classification

4.1.1 Heating appliances shall be grouped into families and types according to the definition in this document. A family can include different types.

4.1.2 For the purposes of determining catalogue outputs, a family shall be divided into a number of separate types (in a family of radiators there can, for example, be single or double panels, with or without convector surfaces, using the same basic components).

4.1.3 The output of each model shall not be greater than 3 500 W and the minimum thermal output of the selected model shall be not less than 200 W at standard excess temperature.

On request of the manufacturer, lower thermal output can be tested and the deviation from the previous requirements shall be registered in the test report.

4.2 Selection of models to be tested for determining the thermal outputs of a type

4.2.1 Selection of models to be tested when the variable characteristic dimension is the overall height and the cross-section of the variable part is constant

4.2.1.1 When a type includes only models of height 300 mm and greater, the models to be tested within that type shall be selected in accordance with 4.2.1.2, 4.2.1.3, 4.2.1.4 and 4.2.1.5.

If the type also includes heights below 300 mm, the minimum height below 300 mm shall be tested in addition to the above models.

For a type in which all heights are below 300 mm, only the minimum and the maximum height shall be tested.

4.2.1.2 The minimum number of models to be tested within a type is determined by the range of heights as shown in <u>Table 2</u>.

Range of heights (m) $H_r = H_{max} - H_{min}$	Number of models to be tested
≤ 1 m	3

Table 2 — Minimum number of models to be tested

4.2.1.3 The minimum length of finned coil of the models to be tested shall be 1 m or the closest to 1 m. For skirting convectors only, the finned coil length shall be the closest to 3 m. In the case of sectional radiators, having height $H \le 1$ m, the minimum number of sections shall be 10 or the minimum length 0,8 m. For sectional radiator having height greater than 1 m, the minimum length shall be 0,45 m.

For towel radiators see <u>4.2.2</u>. dards iteh ai/catalog/standards/sist/c5574b20-4d21-4373-a032-ac5a0f172001/iso-24365-2022

4.2.1.4 In the case of $H_r \le 1$ m, the models to be tested shall be three; the minimum and maximum height of the range and an intermediate height so that H_{int} is equal to or the closest value greater than:

$$H_{\rm int} = H_{\rm max} - \frac{1}{2} \times H_{\rm r}$$

where H_{max} is the maximum height of the type.

4.2.1.5 In the case of 1 m < $H_r \le 2,5$ m, the models to be tested shall be four; the minimum and maximum height of the range and two intermediate heights so that H_{int1} and H_{int2} are the closest values respectively to:

$$H_{\text{int1}} = H_{\text{max}} - \frac{1}{3} \times H_{\text{r}}$$

and

$$H_{\text{int 2}} = H_{\text{max}} - \frac{2}{3} \times H_{\text{r}}$$

4.2.2 Selection of models to be tested when the variable characteristic dimension for the type is other than the overall height

4.2.2.1 General principle

The minimum number of models to be tested is three, having the same overall height and respectively, the minimum, intermediate and maximum value of the relevant characteristic dimension (see 4.2.1.4).

The measured values shall be used to determine the characteristic equation of the type.

For the equation to be valid, all the measured thermal outputs shall fall within ± 2 % of the prediction of the equation.

If any value falls outside this range, the type shall be divided and new equations derived for each subset of the results.

4.2.2.2 Selection of models to be tested when a type includes horizontal parallel flow models

This procedure applies to tubular radiators classified as "towel or bathroom radiators", according to Figure G.3.

If a type includes horizontal parallel flow models, with different heights and lengths, the thermal outputs of models having L_{\min} and L_{\max} respectively shall be tested. If there are more than three heights, the thermal output for all heating appliances having L_{\min} and L_{\max} respectively shall be established using the respective characteristic equation. For each height, the thermal output for models having length included between L_{\min} and L_{\max} shall be linearly interpolated. The adopted procedure shall be noted in the test report.

4.2.2.3 Straight or curved towel or bathroom radiator

For "towels and bathroom radiators" having similar external size (height, length, external diameter of the tubes) and different shape of horizontal tube (straight or curved): 21-4373-4032-

If it is proved by at least two tests that the difference between the thermal outputs of the model having straight tubes and the model having curved tubes, is within $\pm 4,0$ %, then the catalogue data of the models having curved tubes can be assumed equal to the equivalent models having straight tubes.

If the difference exceeds $\pm 4,0$ % the models are classified as a different type and tested for any specific geometry.

4.2.2.4 Towel and bathroom radiator water circulation

For "towel and bathroom radiators" having the same external size (height, length, depth and external diameter of the tube), but different internal circulation of the hot water, if it is proved by at least two tests that the difference between the thermal outputs of the models having different internal circulation is within $\pm 4,0$ %, then the catalogue data of all the models can be assumed to be equal. If the difference exceeds $\pm 4,0$ % the models are classified as different type and so tested for any specific internal water circulation.

4.2.2.5 Different surface treatments (chromed, polished)

Models having the same external size (height, length, depth and external diameter of the tube), but different surface treatment (i.e. painted, chromed or mechanically polished), shall be tested as follows:

a) Models painted and chromed shall be tested according to <u>4.2</u>;

- b) For models having other surface treatments (e.g. satinated or polished) the minimum number of samples to be tested shall be defined as follows:
 - 1) for each other type, two models, having the minimum and the maximum heat output as measured on painted model, shall be tested only to determine the less favourable reduction coefficient;
 - 2) the thermal output of all the models shall be calculated using the reduction coefficient determined according to 1).

4.2.2.6 Influence of water flow rate on thermal output

On request of manufacturers, the influence of water flow rate on thermal output shall be verified.

In this case, additional characteristics shall be tested, setting half and double standard mass flow.

4.3 Testing samples submission and identification

4.3.1 On initial application for the testing of a family of heating appliances, or of a type within a family, heating appliance samples and product drawings shall be submitted to the testing laboratory.

Product drawings shall be submitted by the manufacturer.

4.3.2 The product drawings shall:

- show all dimensions and features having an influence on the heat emission, including the detail of welds or other assembly methods used;
- state the type of material and the nominal material thicknesses of wet or dry surfaces, with the thickness tolerances, and type of paint;
- be identified by the drawing number and the date of revision.5574b20-4d21-4373-a032ac5a0f172001/iso-24365-2022

4.3.3 Before proceeding with the thermal output testing, the laboratory shall identify the appliance against the drawing and shall note conformity of the sample with the drawing in respect of:

- dimensional tolerances given in <u>Table 3</u>;
- material thickness tolerances of convective surfaces, shown on the product drawings.

The laboratory shall also measure the mass and the water content of the sample models. The relevant values shall be reported in the test report.

The models for test shall be selected as specified in 4.2.

4.3.4 Samples of heating appliances already in production shall be taken from the production line or manufacturer's stock by the laboratory or its authorized representative.

Samples of prototype appliances shall be submitted by the manufacturer.

Table 3 — Dimensional tolerances

Dimensions in millimetres or %

±2,5 0 / - 1						Heig Dep	Height of (H((D((D((L((L((H) (H) (H) (H) (Depth ((D) (D) (D) (D) (D) (D) (D) (D) (D) (D	Height of c (HC) (HC) (Depth of c (DC) (DC) Height of (HF) Depth of (HF) Depth of (DF) Depth of (DF) Depth of (NF)	Height of c (HC) (HC) (Depth of c (DC) (DC) (DC) Height of (HF) Depth of (HF) Depth of (DF) Depth of (DF) Depth of (DF) Depth of (DF) Depth of c (DF)
+	±2,5 + 0 / -	±2,5 +0/-1 ±0,2	±2,5 +0/-1 ±0,2	±2,5 +0/-1 +0/2/-0,8	$\begin{array}{c c} \pm 2,5 \\ \pm 2,5 \\ + 0/-1 \\ 1 \\ \pm 0,2 \\ \pm 0,2 \\ \pm 0,2 \\ + 0,2 / - 0,8 \\ \pm 0,2 / - 0,8 \\ \end{array}$	$\begin{array}{c c} \pm 2,5 \\ \pm 2,5 \\ \hline \\ + 0/-1 \\ \hline \\ \\ - 10,2 \\ + 0,2 \\ - 0,8 \\ \pm 0,2 \\ - 0,8 \\ - 1,2 \\ - 0,8 \\ - 1,2 \\ \end{array}$	±2,5 H +0/-1 D +0/-1 D L6 +0,2 / -0,8 h +0,2 / -0,8 h +0,2 / -0,8 h h 0 n	±2,5 H +0/-1 D +0/-1 D L(1) D +0,2 / -0,8 + 0,2 / -0,8 + 0,2 / -0,8 + 0,2 / -0,8 + 0,8 / -1,2 + 0,8 / -1,2 / 0,8 / 0,0 /	±2,5 H +0/-1 D +0/-1 D +0,2 / -0,8 + 0,2 / -0,8 + 0,2 / -0,8 + 0,8 / -1,2 + 0,8 / -1,2 / 0,8 + 0,8 / -1,2 / -0,8 / -1,2 / -0,8 / -1,2 / -0,8 / -1,2 / -0,8 / -1,2 / -0,8 / -1,2 / -0,8 / -1,2 / -0,8 / -1,2 / -0,8 / -1,2 / -0,8 /
±2,5 ±0,65	±2,5 ±0,65 ±0,65	±2,5 ±0,65 ±0,65	^{±2,5} ±0,65 ±0,65 ±0,65	±2,5 ±2,5 ±0,65 ±0,65 ±0,65 ±0,65	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
1 STAN $1 STAN$ $1 Stan$ $1 + 4$ 1	$\frac{1}{1} \frac{1}{1} \frac{1}$	STANDARI ************************************	STANDAR P STANDAR P P STANDAR P P STANDAR P P STANDAR P STANDAR P STANDAR P STANDAR P STANDAR P STANDAR P STANDAR P STANDAR P STANDAR P STANDAR P STANDAR P STANDAR P STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STANDAR STA	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
7 - / 9 + 7 - 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7	$\frac{180}{2436}$ $\frac{2436}{2436}$ $\frac{180}{2436}$ $\frac{2436}{2436}$ $\frac{180}{2436}$ $\frac{2436}{2436}$ $\frac{180}{2436}$ \frac	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{ 30 }{24} \frac{24}{65} \frac{22}{22} \frac{22}{15} \frac{1}{5} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	± ± 5 1 5 1 5 1
+6/-2 ±2 ±1,5 ±2	$+6/-2$ ± 2 $\pm 1,5$ ± 2 +5 $+5$	$\begin{array}{c cccc} + 6 / - 2 & \pm 2 \\ \pm 1,5 & \pm 2 \\ \hline \pm 1,5 & \pm 5 \\ \pm 1,5 & \pm 1,5 & \psi \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccc} + 6 / - 2 & \pm 2 \\ \hline \pm 1,5 & \pm 2 \\ \hline \pm 1,5 & \pm 5 \\ \hline \pm 1,5 & \pm 1,5 & \\ \hline + 3 / - 1 \end{array}$	$\begin{array}{c cccc} +6/-2 & \pm 2 \\ \pm 1,5 & \pm 2 \\ \pm 5 & \pm 5 \\ \pm 1,5 & \pm 5 \\ \pm 1,5 & \pm 1,5 & \\ & \pm 1,5 & \\ & \pm 1,5 & \\ & & \pm 2 \\ \end{array}$	$\begin{array}{c cccc} +6/-2 & \pm 2 \\ \pm 1,5 & \pm 2 \\ \pm 5 & \pm 5 \\ \pm 1,5 \% & \pm 1,5 \% \\ \pm 1,5 \% & \pm 1,5 \% \\ \pm 1,5 \% & \pm 2 \\ \hline \end{array}$	$\begin{array}{c cccc} +6/-2 & \pm 2 \\ \pm 1,5 & \pm 2 \\ \pm 5 & \pm 5 \\ \pm 1,5 \% & \pm 1,5 \% \\ \pm 1,5 \% & \pm 1,5 \% \\ \pm 1,5 \% & \pm 2 \\ \pm 3/-1 \\ \pm 3/-1 \\ \pm 0,5 \\ \pm 0,6 \end{array}$	$\begin{array}{c cccc} +6/-2 & \pm 2 \\ \pm 1,5 & \pm 2 \\ \pm 5 & \pm 5 \\ \pm 1,5 \% & \pm 1,5 \% \\ \pm 1,5 \% & \pm 1,5 \% \\ \pm 1,5 \% & \pm 2 \\ \hline \pm 0,06 & \pm 0,5 \end{array}$	$\begin{array}{c cccc} +6/-2 & \pm 2 \\ \pm 1,5 & \pm 2 \\ \pm 5 & \pm 5 \\ \pm 1,5 & \pm 5 \\ \pm 1,5 & \pm 1,5 & \\ & \pm 1,5 & \\ & \pm 1,5 & \\ & \pm 2 & \\ & & \pm 0,5 & \\ & & \pm 0,06 & \\ \end{array}$
+ 4 / - 3	+4/-3	+ 4 / - 3	+ 4 / - 3 + 4 / - 3 + 4 / - 3 + 4 + 4 / - 3	+4/-3 +4/-3 ±5 ±0,5% +3/-1,5	$\begin{array}{c c} +4/-3 \\ +4/-3 \\ \hline \\ +2 \\ \pm 5 \\ \pm 0,5 \\ \\ +3/-1,5 \\ \pm 1,5 \\ \end{array}$	$\begin{array}{c c} + 4 / - 3 \\ + 4 / - 3 \\ + 4 / - 3 \\ + 2 \\ + 3 / - 1, 5 \\ + 3 / - 1, 5 \\ + 1, 5 \\ + 1, 5 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 1	<u> </u>	s la	li l	tor s s	tor tor	l of jer iss iss iss iss iss iss iss iss iss is	th of iger tes tes tes tres tes tector tector tector	th of iger res dels 0 0 0 0 0 0 0 0 cctor /ector /ector /ector /ector /ector	h of ger es es es ector ector ector
) A F a r d o 24 86 /standa 7 [±] (² + standa ^{7±} (² + standa)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	± 5 ± 5 ± 5 ± 3 7 2	± 5 ± 5 ± 2 ± 4 ± 6 ± 4 ± 6 <th< td=""><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\pm 5$ ± 5 ± 5 ± 5 ± 3 \mathbb{N} \mathbb{N} $\pm 1, 5$ ± 5 ± 5 ± 5 ± 5 ± 3 \mathbb{N} $\pm 0,65$ 5 $\pm 1, 5$ $\pm 0,65$ 5 $\pm 1, 5$ $\pm 1, 5$ $\pm 1, 5$ $\pm 1, 5$ $\pm 0,65$ 5 $\pm 1, 5$ $\pm 1, 5$ $\pm 3, -1, 5$ $\pm 0,2/-0$ $-1,5$ $\pm 3, -1, 5$ $\pm 0, 2, -0$ $\pm 1, 5$ $\pm 0, 2/-0$ $.5$ ± 2 ± 5 $\pm 1, 5$ $\pm 0, 2/-0$ $.5$ ± 2 $\pm 0, 5$ $\pm 0, 5$ $\pm 0, 2/-0$ $.06$ $\pm 0,06$ $\pm 0,5$ $\pm 0,5$ $\pm 0,-1,2$</td><td>± 5 ± 5 ± 5 ± 5 ± 5 ± 5 ± 6 $\pm 1,5$ $\pm 0,65$ 5 $\pm 1,5$ $\pm 1,5$ $\pm 1,5$ $\pm 1,5$ $\pm 0,65$ $\pm 1,5$ $\pm 0,2/-0$ 5 $\pm 1,5$ $\pm 3/-1,5$ $\pm 3/-1,5$ $\pm 3/-1,5$ $\pm 0,2/-0$.5 ± 2 ± 2 $\pm 3/-1,5$ $\pm 1,5$ $\pm 0,2/-0$.5 ± 2 ± 2 $\pm 3/-1,5$ $\pm 1,5$ $\pm 0,2/-0$.5 ± 2 ± 2 $\pm 0,5$ $\pm 0,5$ $\pm 0,2/-0$.6 $\pm 0,5$ ± 2 $\pm 0,5$ $\pm 0,2/-0$ $\pm 0,2/-0$.6 $\pm 0,5$ $\pm 0,5$ $\pm 0,5$ $\pm 0,2/-0$ $\pm 0,2/-0$.6 $\pm 0,5$ $\pm 0,5$ $\pm 0,5$ $\pm 0,2/-0$ $\pm 0,2/-0$.6 $\pm 0,5$ $\pm 0,5$ $\pm 0,2/-0$ $\pm 0,2/-0$</td><td>± 2 ± 2 ± 2 ± 5 $\pm 1,5$ 6 2 2</td></th<>	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	± 5 ± 5 ± 5 ± 5 ± 3 \mathbb{N} \mathbb{N} $\pm 1, 5$ ± 5 ± 5 ± 5 ± 5 ± 3 \mathbb{N} $\pm 0,65$ 5 $\pm 1, 5$ $\pm 0,65$ 5 $\pm 1, 5$ $\pm 1, 5$ $\pm 1, 5$ $\pm 1, 5$ $\pm 0,65$ 5 $\pm 1, 5$ $\pm 1, 5$ $\pm 3, -1, 5$ $\pm 0,2/-0$ $-1,5$ $\pm 3, -1, 5$ $\pm 0, 2, -0$ $\pm 1, 5$ $\pm 0, 2/-0$ $.5$ ± 2 ± 5 $\pm 1, 5$ $\pm 0, 2/-0$ $.5$ ± 2 $\pm 0, 5$ $\pm 0, 5$ $\pm 0, 2/-0$ $.06$ $\pm 0,06$ $\pm 0,5$ $\pm 0,5$ $\pm 0,-1,2$	± 5 ± 5 ± 5 ± 5 ± 5 ± 5 ± 6 $\pm 1,5$ $\pm 0,65$ 5 $\pm 1,5$ $\pm 1,5$ $\pm 1,5$ $\pm 1,5$ $\pm 0,65$ $\pm 1,5$ $\pm 0,2/-0$ 5 $\pm 1,5$ $\pm 3/-1,5$ $\pm 3/-1,5$ $\pm 3/-1,5$ $\pm 0,2/-0$.5 ± 2 ± 2 $\pm 3/-1,5$ $\pm 1,5$ $\pm 0,2/-0$.5 ± 2 ± 2 $\pm 3/-1,5$ $\pm 1,5$ $\pm 0,2/-0$.5 ± 2 ± 2 $\pm 0,5$ $\pm 0,5$ $\pm 0,2/-0$.6 $\pm 0,5$ ± 2 $\pm 0,5$ $\pm 0,2/-0$ $\pm 0,2/-0$.6 $\pm 0,5$ $\pm 0,5$ $\pm 0,5$ $\pm 0,2/-0$ $\pm 0,2/-0$.6 $\pm 0,5$ $\pm 0,5$ $\pm 0,5$ $\pm 0,2/-0$ $\pm 0,2/-0$.6 $\pm 0,5$ $\pm 0,5$ $\pm 0,2/-0$	± 2 ± 2 ± 2 ± 5 $\pm 1,5$ 6 2