

INTERNATIONAL
STANDARD

ISO/IEC
30193

Third edition
2020-03

Corrected version
2020-07

**Information technology — Digitally
recorded media for information
interchange and storage — 120 mm
Triple Layer (100,0 Gbytes per disk)
BD Rewritable disk**

iT
Technologies de l'information — Supports enregistrés
numériquement pour échange et stockage d'information — Disques
BD réinscriptibles de 120 mm triple couche (100,0 Go par disque)
[\(<https://standards.iteh.ai>\)](https://standards.iteh.ai)
Document Preview

[ISO/IEC 30193:2020](#)

<https://standards.iteh.ai/catalog/standards/iso/85b35be0-fd2f-4e60-9eea-61676366d1a2/iso-iec-30193-2020>

Reference number
ISO/IEC 30193:2020(E)

© ISO/IEC 2020

iTeh Standards
(<https://standards.iteh.ai>)
Document Preview

[ISO/IEC 30193:2020](#)

<https://standards.iteh.ai/catalog/standards/iso/85b35be0-fd2f-4e60-9eea-61676366d1a2/iso-iec-30193-2020>

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2020

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

Contents

Page

Foreword	ix
Introduction	x
1 Scope	1
2 Normative references	1
3 Terms and definitions	1
4 Symbols and abbreviated terms	6
5 Conformance	9
5.1 Optical disk	9
5.2 Generating system	9
5.3 Receiving system	9
5.4 Compatibility statement	9
6 Conventions and notations	9
6.1 Levels of grouping	9
6.2 Representation of numbers	10
6.3 Integer calculus	11
7 General description of disk	11
8 General requirements	12
8.1 Environments	12
8.1.1 Test environment	12
8.1.2 Operating environment	13
8.1.3 Storage environment	14
8.1.4 Transportation	15
8.2 Safety requirements	15
8.3 Flammability	16
9 Reference drive	16
9.1 General	16
9.2 Measurement conditions	16
9.3 Optical system	16
9.4 Optical beam	17
9.5 HF read channel	18
9.6 Radial PP read channel	18
9.7 Disk clamping	18
9.8 Rotation of disk and measurement velocity	19
9.9 Normalized servo transfer function	19
9.10 Measurement velocities and reference servos for axial tracking	20
9.10.1 General	20
9.10.2 Reference servo for axial tracking for 1x measurement velocity	20
9.10.3 Reference servo for axial tracking for 2x measurement velocity	22
9.11 Measurement velocities and reference servos for radial tracking	23
9.11.1 General	23
9.11.2 Reference servo for radial tracking for 1x measurement velocity	23
9.11.3 Reference servo for radial tracking for 2x measurement velocity	25
10 Dimensional characteristics	26
10.1 General	26
10.2 Disk reference planes and reference axis	26
10.3 Overall dimensions	28
10.4 First transition area	28
10.5 Protection ring	28
10.6 Clamping zone	28
10.7 Second transition area	29

10.8	Information area.....	29
10.8.1	General.....	29
10.8.2	Subdivision of information zone on TL disk.....	30
10.9	Rim area.....	31
11	Mechanical characteristics	31
11.1	Mass.....	31
11.2	Moment of inertia.....	31
11.3	Dynamic imbalance.....	31
11.4	Axial runout.....	31
11.4.1	General.....	31
11.4.2	Residual axial tracking error for 1x measurement velocity.....	32
11.4.3	Residual axial tracking error for 2x measurement velocity.....	32
11.5	Radial runout.....	32
11.5.1	General.....	32
11.5.2	Residual radial tracking error for 1x measurement velocity.....	33
11.5.3	Residual radial tracking error for 2x measurement velocity.....	33
11.6	Durability of cover layer.....	33
11.6.1	Impact resistance of cover layer.....	33
11.6.2	Scratch resistance of cover layer.....	34
11.6.3	Repulsion of fingerprints by cover layer.....	34
12	Optical characteristics in information area.....	34
12.1	General.....	34
12.2	Refractive index of transmission stacks (TS).....	34
12.3	Thickness of transmission stacks (TS).....	34
12.4	Example of target thickness of spacer layers for TL disks.....	35
12.5	Reflectivity of recording layers.....	36
12.6	Birefringence.....	37
12.7	Angular deviation.....	37
13	Data format	38
13.1	General.....	38
13.2	Data frame.....	41
13.3	Error-detection code (EDC).....	41
13.4	Scrambled data frame.....	42
13.5	Data block.....	43
13.6	LDC block.....	43
13.7	LDC code-words.....	44
13.8	LDC cluster	45
13.8.1	General.....	45
13.8.2	First interleaving step	45
13.8.3	Second interleaving step	45
13.9	Addressing and control data.....	47
13.9.1	General.....	47
13.9.2	Address units.....	47
13.9.3	User-control data.....	52
13.9.4	Byte/Bit assignment for user-control data.....	53
13.10	Access block.....	55
13.11	BIS block.....	55
13.12	BIS code-words.....	56
13.13	BIS cluster	57
13.14	ECC cluster	60
13.15	Recording frames.....	61
13.16	Physical cluster	62
13.17	17PP modulation for recordable data.....	62
13.17.1	General.....	62
13.17.2	Bit conversion rules	62
13.17.3	dc-control procedure	63
13.17.4	Frame sync	63

13.18	Modulation and NRZI conversion	65
14	Physical data allocating and linking	65
14.1	General	65
14.2	Recording-unit block (RUB)	65
14.2.1	General	65
14.2.2	Data run-in	66
14.2.3	Data run-out	67
14.2.4	Guard_3 field	68
14.3	Locating data relative to wobble addresses	68
14.3.1	General	68
14.3.2	Start-position shift (SPS)	68
15	Track format	70
15.1	General	70
15.2	Track shape	70
15.3	Track path	72
15.4	Track pitch	72
15.4.1	Track pitch in BCA zone	72
15.4.2	Track pitch in embossed HFM areas	72
15.4.3	Track pitch in rewritable areas	72
15.4.4	Track pitch between embossed HFM area and rewritable area	73
15.5	Track layout of HFM grooves	73
15.5.1	General	73
15.5.2	Data format	73
15.5.3	Addressing and control data	74
15.5.4	Recording frames	77
15.6	Track layout of wobbled grooves	79
15.6.1	General	79
15.6.2	Modulation of wobbles	80
15.6.3	Wobble polarity	81
15.7	ADIP information	81
15.7.1	General	81
15.7.2	ADIP-unit types	82
15.7.3	ADIP word structure	83
15.7.4	ADIP data structure	84
15.7.5	ADIP error correction	87
15.8	Disk information in ADIP aux frame	89
15.8.1	General	89
15.8.2	Error protection for disk information aux frames	90
15.8.3	Disk-Information data structure	91
16	General description of information zone	140
16.1	General	140
16.2	Format of information zone	141
17	Layout of rewritable area of information zone	141
18	Inner zone	145
18.1	General	145
18.2	Permanent information and control data (PIC) zone	149
18.2.1	General	149
18.2.2	Content of PIC zone	149
18.2.3	Emergency brake	150
18.3	Rewritable area of inner zone(s)	152
18.3.1	Protection-zone 2	152
18.3.2	Buffer	152
18.3.3	INFO 2/Reserved 8	152
18.3.4	INFO 2/Reserved 7	153
18.3.5	INFO 2/Reserved 6	153
18.3.6	INFO 2/Reserved 5	153

18.3.7	INFO 2/PAC 2	153
18.3.8	INFO 2/Reserved	153
18.3.9	INFO 2/DMA 2	153
18.3.10	INFO 2/Control data 2	153
18.3.11	INFO 2/Buffer 2	153
18.3.12	OPC/Test zone	154
18.3.13	Reserved	154
18.3.14	INFO 1/Buffer 1	154
18.3.15	INFO 1/Drive area (optional)	154
18.3.16	INFO 1/Reserved 3	155
18.3.17	INFO 1/Reserved 2	155
18.3.18	INFO 1/Reserved 1	155
18.3.19	INFO 1/DMA 1	155
18.3.20	INFO 1/Control Data 1	155
18.3.21	INFO 1/PAC 1	155
18.3.22	INFO 1/Reserved	155
19	Data zone	156
20	Outer zone(s)	156
20.1	General	156
20.2	INFO 3/Buffer 3	156
20.3	INFO 3/DMA 3	157
20.4	INFO 3/Control data 3	157
20.5	Angular buffer	157
20.6	INFO 4/DMA 4	157
20.7	INFO 4/Control data 4	157
20.8	INFO 4/Buffer 4	157
20.9	DCZ 0/Test zone, DCZ 1/Test zone and DCZ 2/Test zone	157
20.10	Protection-zone 3	157
21	Physical-access control clusters	157
21.1	General	157
21.2	Layout of PAC zones	158
21.3	General structure of PAC clusters	158
21.4	Primary PAC cluster (mandatory)	163
21.5	Disk write-protect PAC cluster (optional)	166
21.6	IS1 and IS2 PAC clusters	170
22	Disk management	171
22.1	General	171
22.2	Disk-management structure (DMS)	172
22.2.1	General	172
22.2.2	Disk-definition structure (DDS)	173
22.2.3	Defect list (DFL)	177
23	Assignment of logical-sector numbers (LSNs)	182
24	Characteristics of grooved areas	183
25	Method of testing for grooved area	183
25.1	General	183
25.2	Environment	183
25.3	Reference drive	183
25.3.1	General	183
25.3.2	Read power	183
25.3.3	Read channels	183
25.3.4	Tracking requirements	184
25.3.5	Scanning velocities	184
25.4	Definition of signals	184
26	Signals from HFM grooves	185

26.1	Push-pull polarity	185
26.2	Push-pull signal	185
26.3	Wobble signal	186
26.4	Jitter of HFM signal	186
27	Signals from wobbled grooves	186
27.1	Phase depth	186
27.2	Push-pull signal	186
27.3	Wobble signal	187
27.3.1	General	187
27.3.2	Measurement of NWS	187
27.3.3	Measurement of the wobble CNR	187
27.3.4	Measurement of harmonic distortion of wobble	187
28	Characteristics of recording layer	188
29	Method of testing for recording layer	188
29.1	General	188
29.2	Environment	188
29.3	Reference drive	188
29.3.1	General	188
29.3.2	Read power	188
29.3.3	Read channels	188
29.3.4	Tracking requirements	188
29.3.5	Scanning velocities	189
29.4	Write conditions	189
29.4.1	Write-pulse waveform	189
29.4.2	Write powers	189
29.4.3	Average power	190
29.4.4	Write conditions for i-MLSE measurement	190
29.4.5	Write conditions for cross-erase measurements	190
29.5	Definition of signals	190
30	Signals from recorded areas	190
30.1	HF signals	190
30.2	Modulated amplitude	190
30.3	Reflectivity-modulation product	192
30.4	Asymmetry	192
30.5	i-MLSE@DOW(n)	192
30.6	Cross-erase @ DOW(n) _{XE}	192
30.7	Read stability	193
31	Local defects	194
32	Characteristics of user data	194
33	Method of testing for user data	194
33.1	General	194
33.2	Environment	194
33.3	Reference drive	194
33.3.1	General	194
33.3.2	Read power	194
33.3.3	Read channels	194
33.3.4	Error correction	195
33.3.5	Tracking requirements	195
33.3.6	Scanning velocities	195
33.4	Definition of signals	195
34	Minimum quality of recorded information	196
34.1	General	196
34.2	Random symbol error rate	196
34.3	Maximum burst errors	196

34.4	User-written data.....	196
35	Burst-cutting area (BCA)	196
Annex A (normative) Thickness of transmission stacks in case of multiple layers	198	
Annex B (normative) Measurement of reflectivity	201	
Annex C (normative) Measurement of scratch resistance of cover layer	207	
Annex D (normative) Measurement of repulsion of grime by cover layer	209	
Annex E (normative) Measurement of wobble amplitude.....	212	
Annex F (normative) Write-pulse waveform for testing.....	217	
Annex G (normative) Optimum power control (OPC) procedure for disk.....	224	
Annex H (normative) HF signal pre-processing for integrated-maximum likelihood sequence error estimation (i-MLSE) measurements.....	227	
Annex I (normative) Measurement procedures	239	
Annex J (informative) Measurement of birefringence	251	
Annex K (informative) Measurement of thickness of cover layer and spacer layer	254	
Annex L (informative) Measurement of impact resistance of cover layer	257	
Annex M (informative) Groove deviation and wobble amplitude	259	
Annex N (informative) Guidelines for write pulse adjustment using L-SEAT edge-shift	261	
Bibliography	270	

iteh Standards
(<https://standards.iteh.ai>)
Document Preview

[ISO/IEC 30193:2020](https://standards.iteh.ai/catalog/standards/iso/85b35be0-fd2f-4e60-9eea-61676366d1a2/iso-iec-30193-2020)

<https://standards.iteh.ai/catalog/standards/iso/85b35be0-fd2f-4e60-9eea-61676366d1a2/iso-iec-30193-2020>

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document is in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/foreword.html.

This document was prepared by Joint Technical Committee ISO/IEC JTC 1, information *Technology*, Subcommittee SC 23, *Digitally recorded media for information interchange and storage*.

This third edition cancels and replaces the second edition (ISO/IEC 30193:2016), which has been technically revised. It also incorporates the Amendment ISO 30193:2016/DAM1.

https://standards.iteh.ai/catalog/standards/iso/95b25b30_f12f4e60_0cc2_61676366d1a2/iso-iec-30193-2020
The main changes compared to the previous edition are as follows:

- additional requirements for 4x reading velocity have been added;
- additional requirements for physical access control and reserved area of BD application have been added.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

This corrected version of ISO 30193:2020 incorporates the following corrections:

- minor editorial corrections in symbols (italicization, bolding);
- in [15.8.3.2](#), reinstatement of "These two bytes shall be set to 44 49h, representing the characters "DI" in Bytes 0 to 1 and deletion from Byte 3.

Introduction

In March 2002, nine companies known as the Blu-ray Disc Founders, or BDF, came together to create optical-disk formats with large capacity and high-speed transfer rates that would be needed for recording and reproducing high-definition video content. This joint effort turned out to be fruitful and the first version of its Blu-ray Disc™ Rewritable Format Part 1 version 1.0 in June 2002.

Then, in October 2004, more than 100 companies joined and BDF became an open forum called the Blu-ray Disc Association (BDA). The BDA issued version 2.1 of the Blu-ray Disc™ Rewritable Format Part 1 in October 2005 and version 3.0 in June 2010. By the end of 2010, over a hundred million Blu-ray Disc™ had been shipped and Blu-ray™ devices such as players, recorders, game consoles and PC drives were in use all over the world.

The BDA also conducts verification activities for both disks and devices and has established more than 10 testing centers in Asia, Europe and the USA.

The BDA gave consumer applications the highest priority in the first few years. But it was known, of course, that international standardization would be required before many government entities and their contractors would be allowed to use Blu-ray Disc™. In January and February 2011, the chairs of ISO/IEC JTC 1/SC 23 and JIIMA (Japan Image and information Management Association) formally requested the BDA to consider international standardization. The reason for this was to enable the inclusion of writable BDs along with DVDs and CDs in an International Standard specifying the test methods for the estimation of lifetime of optical storage media for long-term data storage. In October 2011, the President of the BDA responded that his organization had decided to pursue international standardization for the basic physical formats for the recordable and rewritable Blu-ray™ Formats.

In December 2011, the BDA sent project proposals for international standardization of four formats to ISO/IEC JTC 1/SC 23 via the Japanese national body. They are 120 mm single layer (25,0 Gbytes per disk) and dual layer (50,0 Gbytes per disk) BD recordable disks, 120 mm single layer (25,0 Gbytes per disk) and dual layer (50,0 Gbytes per disk) BD rewritable disks, 120 mm triple layer (100,0 Gbytes per disk) and quadruple layer (128,0 Gbytes per disk) BD recordable disks and 120 mm triple layer (100,0 Gbytes per disk) BD rewritable disk.

ISO/IEC 30193:2020

This document specifies the mechanical, physical and optical characteristics of a 120 mm rewritable optical disk with a capacity of 100,0 Gbytes.

A few additional specifications are required in order to write and read video-recording applications, such as BDAV format which had been specified by the BDA for use on BD rewritable disks. These specifications, which are related to the BD application, the file system or the content-protection system, are required for the disk, the generating system and the receiving system. For more information about the BD application, the content-protection system and the additional requirements for the Blu-ray™ Format specifications, see <http://www.blu-raydisc.info>.

The International Organization for Standardization (ISO) and International Electrotechnical Commission (IEC) draw attention to the fact that it is claimed that compliance with this document may involve the use of a patent.

ISO and IEC take no position concerning the evidence, validity and scope of this patent right.

The holder of this patent right has assured ISO and IEC that he/she is willing to negotiate licences under reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the statement of the holder of this patent right is registered with ISO and IEC. information may be obtained from the patent database available at www.iso.org/patents.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights other than those in the patent database. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

NOTE Blu-ray™, Blu-ray Disc™ and the logos are trademarks of the Blu-ray Disc Association.

Information technology — Digitally recorded media for information interchange and storage — 120 mm Triple Layer (100,0 Gbytes per disk) BD Rewritable disk

1 Scope

This document specifies the mechanical, physical and optical characteristics of a 120 mm rewritable optical disk with a capacity of 100,0 Gbytes. It specifies the quality of the recorded and unrecorded signals, the format of the data and the recording method, thereby allowing for information interchange by means of such disks. User data can be written, read and overwritten many times using a reversible method. This disk is identified as a BD rewritable disk.

This document specifies the following:

- the one disk type;
- the conditions for conformance;
- the environments in which the disk is to be operated and stored;
- the mechanical and physical characteristics of the disk, so as to provide mechanical interchange between data processing systems;
- the format of the information on the disk, including the physical disposition of the tracks and sectors;
- the error-correcting codes and the coding method used;
- the characteristics of the signals recorded on the disk, enabling data processing systems to read data from the disk.

https://standards.iteh.ai/catalog/standards/iso/85b25b30_612f4c60_8cca61676266d1e2/iso_30193_2020
This document provides for interchange of disks between disk drives. Together with a standard for volume and file structure, it provides for full data interchange between data processing systems.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 9352, *Plastics — Determination of resistance to wear by abrasive wheels*

ISO/IEC 646, *Information technology — ISO 7-bit coded character set for information interchange*

IEC 60068-2-2, *Environmental testing — Part 2-2: Tests — Test B: Dry heat*

IEC 60068-2-30, *Environmental testing — Part 2-30: Tests — Test Db: Damp heat, cyclic (12 h + 12 h cycle)*

IEC 60950-1, *Information technology equipment — Safety — Part 1: General requirements*

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at <https://www.iso.org/obp>
- IEC Electropedia: available at <http://www.electropedia.org/>

3.1

BD

disk having a *cover layer* (3.4) around 0,1 mm thick and a *substrate* (3.43) around 1,1 mm thick on which data is read or recorded by an optical pick-up unit (OPU) using 405 nm laser diode and numerical aperture, NA = 0,85 lens

Note 1 to entry: User data recorded on a disk is formatted using 17PP modulation and an LDC+BIS Code.

3.2

BD application

BDAP

contents standard specified for a *BD* (3.1), for instance a video application, which requires area for a content-protection system and for its own defect-management system on the disk

3.3

channel bit

element by which the binary value ZERO or ONE is represented by *pits* (3.27)/*marks* (3.19) and *spaces* (3.42) on a disk

3.4

cover layer

transparent layer with precisely controlled optical properties that covers the *recording layer* (3.33) closest to the entrance surface of a disk

3.5

data zone *n*

area between the inner zone and the outer zone on *layer Ln* (3.17)

3.6

defective cluster

cluster in a *user-data area* (3.47) that has been registered in a defect list as unreliable or uncorrectable one

3.7

digital-sum value

DSV

arithmetic sum obtained from a bit stream by assigning the decimal value +1 to *channel bits* (3.3) set to ONE and the decimal value -1 to channel bits set to ZERO

3.8

disk reference plane

plane defined by the perfect flat annular surface of an ideal spindle, onto which the clamping zone of a disk is clamped, that is normal to the axis of rotation

3.9

embossed HFM area

area on a disk where information has been stored by means of an *HFM groove* (3.13) during manufacturing of the disk

3.10

entrance surface

surface of a disk onto which the optical beam first impinges

3.11**erased groove**

blank groove (3.12) on a disk that has been erased by irradiating the track (3.44) using only erase power level, P_{E0} , as determined by the OPC algorithm

3.12**groove**

trench-like feature of a disk connected to a recording layer (3.33)

Note 1 to entry: In case of triple-layer disk, one groove can be carried by the substrate (3.43) and other grooves can be carried by the spacer layer (3.41) or the cover layer (3.4) (see Figure 1) grooves are used to define the track (3.44) locations.

In the BD rewritable system, there are 3 types of grooves:

- wobbled groove (3.49) in rewritable area containing address information;
- HFM groove (3.13) in embossed HFM area containing permanent information and control data;
- straight groove without any modulation in the BCA zone.

3.13**high-frequency modulated groove****HFM groove**

groove (3.12) modulated in the radial direction with a rather high bandwidth signal

Note 1 to entry: HFM groove creates a data channel with sufficient capacity and data rate for replicated information.

3.14**information area**

area on a disk in which information can be recorded

3.15**information zone**

[ISO/IEC 30193:2020](https://standards.iteh.ai/ISO/IEC%2030193-2020.pdf)

<https://standards.iteh.ai/ISO/IEC%2030193-2020.pdf>

3.16**land**

surface of a recording layer (3.33) between successive windings of a groove (3.12)

3.17**layer L_n**

one recording layer (3.33) of a disk identified by n

Note 1 to entry: layer L $(n+1)$ is closer to the entrance surface (3.10) of a disk than layer L n .

3.18**layer type**

identification of a disk using number of layer(s)

Note 1 to entry: In case of triple-layer disk, the layer type is TL (see Clause 7).

3.19**mark**

feature of a recording layer (3.33), which can take the form of an amorphous domain in the crystalline recording stack due to recording, that can be sensed by an optical read-out system

Note 1 to entry: The pattern of marks and spaces (3.42) represents the data on a disk.

3.20**mark polarity**

polarity of reflectivity change when marks (3.19) are recorded

3.21

measurement velocity

linear velocity at which a disk is measured during reading

Note 1 to entry: The nx measurement velocity means the measurement velocity of n times the *reference velocity* (3.36).

3.22

modulation bit

alternative form representing the data, that is more suited to be transmitted via a communication channel or to be stored on a storage system

3.23

NRZI conversion

method of converting modulation-bit stream into a physical signal

3.24

on-groove

geometry where *grooves* (3.12) are nearer to the *entrance surface* (3.10) of a disk than the *lands* (3.16)

3.25

padding

process in a drive to fill up the missing sectors in a 64K cluster, which consists of 32 *sectors* (3.40), with all 00h data when the host supplies less than the 32 sectors and needs to fill up the cluster

3.26

phase change

physical effect by which an area of a *recording layer* (3.33) is irradiated by a laser beam and heated so as to change from a crystalline state to an amorphous state and vice versa

iTeh Standards

Document Preview

3.27

pit

feature of a *recording layer* (3.33), which can take the form of a depression in or elevation on the *land* (3.16) surface, that can be sensed by the optical read-out system

https://standards.iteh.ai/catalog/standards/iso/85b251-c0_f12f_4a60_9cc8_61676366d1a2/iso-iec-30193-2020

Note 1 to entry: The pattern of pits and spaces (3.42) represents the data on a disk.

3.28

polarization

direction of the electric field vector of an optical beam

Note 1 to entry: The plane of polarization is the plane containing the electric field vector and the direction of propagation of the beam.

3.29

pre-recorded area

area on a disk where information has been recorded by the manufacturer/supplier of the disk by applying standard recording techniques after finishing of the replication process

3.30

protective coating

optional additional layer on top of the *cover layer* (3.4) provided for extra protection against scratches and other types of damage

3.31

reading velocity

linear velocity at which a disk is actually read

Note 1 to entry: The nx reading velocity means the reading velocity of n times the *reference velocity* (3.36).