

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION •МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ • ORGANISATION INTERNATIONALE DE NORMALISATION

Ground thread taps for ISO metric threads of tolerances 4H to 8H and 4G to 6G coarse and fine pitches – Manufacturing tolerances on the threaded portion

iTeh STANDARD PREVIEW (standards.iteh.ai)

First edition - 1973-12-01

ISO 2857:1973 https://standards.iteh.ai/catalog/standards/sist/cade1edc-3cdf-4d17-9a4c-209db8bd5ad1/iso-2857-1973

FOREWORD

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO Member Bodies). The work of developing International Standards is carried out through ISO Technical Committees. Every Member Body interested in a subject for which a Technical Committee has been set up has the right to be represented on that Committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the Technical Committees are circulated to the Member Bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 2857 was drawn Tup by Fechnical Committee VIEW ISO/TC 29, Small tools, and circulated to the Member Bodies in August 1972.

It has been approved by the Member Bodies of the following countries :

		150 2037.1775			
Austria	Indipa://standards.iteh.ai/catalog/ofmaduads/sist/cade1edc-3cdf-4d17-9a4c-				
Belgium	Ireland	209db South Africas Rep 90f			
Chile	Israel	Switzerland			
Czechoslovakia	Italy	Thailand			
Egypt, Arab Rep. of	Netherlands	Turkey			
France	New Zealand	United Kingdom			
Germany	Poland				

The Member Bodies of the following countries expressed disapproval of the document on technical grounds :

Japan Sweden

© International Organization for Standardization, 1973 •

Printed in Switzerland

CONTENTS

1 Scope and field of application	1
2 References	1
3 Basic data	1
3.1 Thread profile of nuts	1
3.2 Thread profile of tap	2
3.3 Tolerance classes of taps	2
3.4 Calculation of tap thread dimensions of classes 1, 2 and 3	3
4 Manufacturing tolerances on tap threads	4
Tab S ⁴¹ Major diameter d DDEVTEW	4
4.2 Pitch diameter d_2	5
(4.3 Minor diameter of tap σ_1)	6
4.4 Tolerance on the angle α and half angle $\alpha/2$ of thread	6
https://standards.iteh5i/coundativepitchserole7cdoverdanydhumber-of threads	6
5 Designation and marking of taps	6
6 Example of calculation of the dimensions of the threaded portion of a tap.	7
Annexes	
A – Ground thread taps for ISO metric threads of coarse pitch	8
B – Ground thread taps for ISO metric threads of fine pitch	10

Page

iTeh STANDARD PREVIEW (standards.iteh.ai)

This page intentionally left blank ISO 2857:1973

https://standards.iteh.ai/catalog/standards/sist/cade1edc-3cdf-4d17-9a4c-209db8bd5ad1/iso-2857-1973

Ground thread taps for ISO metric threads of tolerances 4H to 8H and 4G to 6G coarse and fine pitches — Manufacturing tolerances on the threaded portion

1

3.2 Thread profile of tap : see figure 2.

- d = D= nominal diameter
- = permissible minimum major d min diameter
- .k = minimum clearance on major diameter
- $d_2 = D_2 =$ pitch diameter
- d_2 min. = minimum pitch diameter
- d_2 max. = maximum pitch diameter
- Es = upper deviation of pitch diameter
- Em = lower deviation of pitch diameter
- T_{d} = tolerance on pitch diameter

iTeh STANDARD PREVIEW

3.3 Tolerance classes of taps

3.3.1 Tolerance on pitch diameter

For the production of nut classes of the following classes : The value for the tap pitch diameter tolerance T_{d_2} is the same for all three classes 1, 2 and 3 : it is equal to 20^{-5} % of t. 4H - 5H - 6H - 7H - 8H with zero minimum clearance, ISC

The position of the tolerance of the tap with respect to the 4G - 5G - 6G with positive minimum clearance; h.ai/catalog/sta basic pitch diameter results from the lower deviation Em, 209db8bd5 the values of which are (see figure 3) : three tolerance classes have been accepted :

Class 1 - Class 2 - Class 3

NUTS

The tolerances of these three classes are determined as indicated hereafter, in terms of a tolerance unit t, the value of which is equal to the pitch tolerance value T_{D_2} , grade 5 of the nut (extrapolated up to pitch 0,2 mm) :

$$t = T_{D_2}$$
 grade 5 of the nut.

for tap class 1:+0,1tfor tap class 2: +0,3t

for tap class 3: +0.5 t

3.3.2 Choice of tolerance class of the tap with respect to the class of thread to be produced

Unless otherwise specified, the taps of classes 1 to 3 will generally be used for the manufacture of nuts of the following classes :

- Class 1 : for nuts of classes 4H and 5H
- Class 2 : for nuts of classes 6H and also 4G and 5G
- Class 3 : for nuts of classes 7H 8H and also 6G

This correspondance has, however, only an indicative nature, since the accuracy of tapping can vary as a function of a series of factors such as : the material to be tapped, the condition of the machine tool, the tapping attachment, the tapping speed, the lubricant, etc.

Users are therefore recommended to select in each case the most suitable class of tap for the manufacture of the required class of nut.

^{3.4} Calculation of tap thread dimensions of classes 1, 2 and 3

* $t = \text{tolerance unit} = TD_2$ pitch tolerance, grade 5 of the nut. The values are given in ISO/R 965/I, section 9.

** The d_2 values correspond to the values of the pitch diameter D_2 of the nut in conformity with ISO/R 724.

4 MANUFACTURING TOLERANCES ON TAP THREADS

TABLE 1 - Minimum deviation Js in micrometres

4.1 Major diameter d

5/2

d min.

The minimum major diameter d min. shall be equal to the nominal diameter D of the nut, plus deviation Js. Deviation Js shall be greater than or equal to 0,4 t.*

The maximum major diameter d max, is not fixed and is left to the manufacturer's judgement.

 $\overline{t} = tolerance unit = TD_2$, pitch tolerance, grade 5 of the nut.

(See ISO/R 965/I. The values given for the pitch of 0,2 have been obtained by extrapolation.)

4.2 Pitch diameter d_2

The maximum and minimum permissible values on the pitch diameters, d_2 max. and d_2 min., of the taps are calculated in terms of the deviations Em and Es given in Table 2.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	TABLE 2 — Values of deviations <i>Em</i> and <i>Es</i> in micrometres					Nominal diameter		Pitch	Deviations for pitch diameters				
Nominal lumeter over Pitch including Design including Design including Design including Design including Design including Image: Ima							over	up to and including	-	1	classes 2	3	
Normal same bin or and inclusing or and inclusion o	Deviations for nitch						1	+ 38 + 13	+ 63 + 38	+ 88 + 63			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Nominal	up to	Pitch	diameters Em and Es						1,25	+ 42 + 14	+ 70 + 42	+ 98 + 70
$\begin{array}{ c c c c c c c c } 0,99 & 1,4 & \hline 0,2 & +15 & - & - & - & - & - & - & - & - & - & $	over	and including		1	classes 2	3				1,5	+ 45 + 15	+ 75 + 45	+ 105 + 75
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0,2	+ 15 + 5	_	-		11,2	22,4	1,75	+ 48 + 16	+ 80 + 48	+ 112 + 80
$\begin{array}{ c c c c c c c } \hline 0.3 & \begin{array}{c} + 18 \\ + 6 \\ + 6 \\ + 6 \\ + 6 \\ + 6 \\ + 6 \\ + 6 \\ + 6 \\ + 6 \\ + 6 \\ + 6 \\ + 6 \\ + 6 \\ + 6 \\ - 202 \\ - 28 \\ - 28 \\ - 28 \\ - 28 \\ - 28 \\ - 28 \\ - 28 \\ - 28 \\ - 28 \\ - 28 \\ - 28 \\ - 5,6 \\ - 5,6 \\ - 11,2 \\ - $	0,99	1,4	0,25	+ 17	T A NI			DBE		2	+ 51 + 17	+ 85 + 51	+ 119 + 85
$ \begin{array}{ c c c c c c c c } 1,4 & 0,2 & +16 & - & - & - & - & - & - & - & - & - & $			0,3	+ 18 + 6	+ 30 + 18	lards	ite	eh.ai)		2,5	+ 54 + 18	+ 90 + 54	+ 126 + 90
$ \begin{array}{ c c c c c c c } 1.4 & 2.8 & \hline 6, 6, 6, 6, 1, 1, 6, 1, 1			0,2	+ 16 + 5	_	 ISO 2857	1973			1	+ 40 + 13	+ 66 + 40	+ 92 + 66
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1,4		10,25://st	andtart 8. ite + 6	h.ai/ <u>c</u> atalo 209db8	g/standard od5ad1/isc	s/sist/c -2857	2 t/cade1edc-3 57-1973	edf-4d17-9	1,5	+ 48 + 16	+ 80 + 48	+ 112 + 80
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		2,8	0,35	+ 20 + 7	+ 34 + 20					2	+ 54 + 18	+ 90 + 54	+ 126 + 90
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			0,4	+ 21 + 7	+ 36 + 21	_		22,4	45	3	+ 64 + 21	+ 106 + 64	+ 148 + 106
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			0,45	+ 23 + 8	+ 38 + 23	_				3,5	+ 67 + 22	+ 112 + 67	+ 157 + 112
$ 2,8 5,6 \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0,35	+ 21 + 7	+ 36 + 21					4	+ 71 + 24	+ 118 + 71	+ 165 + 118
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0,5	+ 24 + 8	+ 40 + 24	+ 56 + 40				4,5	+ 75 + 25	+ 125 + 75	+ 175 + 125
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0,6	+ 27 + 9	+ 45 + 27	+ 63 + 45				1,5	+ 51 + 17	+ 85 + 51	+ 119 + 85
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,8	5,6	0,7	+ 29	+ 48	+ 67]			2	+ 57	+ 95	+ 133
$5,6 11,2 0,8 +30 +50 +70 \\ +10 +30 +50 \\ +10 +30 +50 \\ +10 +30 +50 \\ +20 \\ +10 \\ +10 \\ +10 \\ +10 \\ +10 \\ +10 \\ +112 $			0,75	+ 10	+ 29	+ 48	1				+ 19	+ 5/	+ 95
$ 5,6 11,2 \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$			0,8	+ 30 + 10	+ 50 + 30	+ 70 + 50				3	+ 67 + 22	+ 112 + 67	+ 112
5,6 11,2 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0,75	+ 32 + 11	+ 53 + 32	+ 74 + 53		45	90	4	+ 75 + 25	+ 125 + 75	+ 175 + 125
5,6 11,2 $+38$ $+63$ $+88$ $+13$ $+38$ $+63$ $+84$ $+140$ $1,5$ $+42$ $+70$ $+98$ $+14$ $+42$ $+70$ $+98$ $+30$ $+90$ $+150$ $+210$ $+30$ $+90$ $+150$	5,6	11,2	1	+ 35 + 12	+ 59 + 35	+ 83 + 59				5	+ 80 + 27	+ 133 + 80	+ 186 + 133
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1,25	+ 38 + 13	+ 63 + 38	+ 88 + 63				5,5	+ 84 + 28	+ 140 + 84	+ 196 + 140
			1,5	+ 42 + 14	+ 70 + 42	+ 98 + 70				6	+ 90 + 30	+ 150 + 90	+ 210 + 150

<u>o</u>

ړم

4.3 Minor diameter of tap d_1

No tolerance is specified on this diameter which is governed by the wear on the tool used to produce this thread.

The profile of the radius blending with the flanks of the thread should however lie, in principle, under the line AB which corresponds with the internal diameter D_1 of the basic ISO profile.

NUT

5 DESIGNATION AND MARKING OF TAPS

The taps shall bear, after their dimensional designation (as indicated in ISO/R 529), the nominal diameter and, if necessary, the pitch of the thread, and the symbol ISO followed by the class of the tap, a dash being placed before the ISO symbol.

Examples :

For an M6 coarse pitch tap of class 2 :

M 6 - ISO 2

For an M 20 tap with pitch of 2 of class 1 :

M 20 X 2 – ISO 1

TAP iTeh STANDARD PREVIEW (standards.iteh.ai)

4.4 Tolerance on the angle α and the half-angle $\alpha/2$ of thread https://standards.iteh.ai/catalog/standards/sist/cade1edc-3cdf-4d17-9a4c-

The values for these tolerances are based on the pitch of the 8bd5ad1/iso-2857-1973

thread; they apply both to the angle α and to the half-angle $\alpha/2$ and shall be in accordance with the values of Table 3.

TABLE 3 - Tolerances on the angles

Pit	Tolerances on			
Over	Up to and including	$1/2$ angle $\alpha/2$		
0,2	0,4	± 40'		
0,4	0,8	± 30'		
0,8	1,5	± 25′		
1,5	3	± 20'		
3	6	± 15′		

4.5 Cumulative pitch error T_p over any number of threads

This error is fixed at \pm 0,05 % of the considered measuring length with a minimum of \pm 0,008 mm.

6 EXAMPLE OF CALCULATION OF THE DIMENSIONS OF THE THREADED PORTION OF A TAP

GROUND THREAD TAPS FOR ISO METRIC PITCHES

Example for an M 14 tap, class 2

Tap designation	M 14 – ISO 2				
Tap characteristics	D = nominal diameter = 14 mm Pitch = 2 mm Threaded length = 30 mm				
Basic data taken from ISO/R 724 (standards	iteh. ^d 2fi ⁰ ² = 12,701 mm				
Minimum major diameter (d min.) ISO 2857:1 https://standards.iteh.ai/catalog/standards. 209db8bd5ad1/iso-	$d \min = D + Js (0,4 t)$ sist/cade1edP= 3 cdf-4d1- 7 +9a4c 14,000 mm 2857-19 3 s (0,4 t) = 0,068 mm $d \min = 14,000 + 0,068 = 14,068 mm$ (see 4.1)				
Minimum pitch diameter (d ₂ min.)	$d_2 \min = d_2 + Em (0, 3 t)$ $d_2 (\text{basic}) = \dots \dots \dots \dots \dots \dots 12,701 \text{ mm}$ $Em (0,3 t) = \dots \dots \dots \dots \dots \dots 0,051 \text{ mm}$ $d_2 \min = 12,701 + 0,051 = 12,752 \text{ mm}$ (see 4.2)				
Maximum pitch diameter (d ₂ max.)	$d_2 \max = d_2 + Es (0,5 t)$ $d_2 (\text{basic}) = \dots $				
Minor diameter	Not specified (see 4.3)				
Tolerance on the angle ($lpha$) or half-angle ($lpha/2$) of pitch	For a pitch of 2 mm $\pm 20'$ (see 4.4)				
Cumulative pitch error T _p over any number of threads	(see 4.5)				

 $t = T_{D2}$: pitch tolerance, grade 5 of the nut. (See 3.4.)