INTERNATIONAL STANDARD

Third edition 2021-06

Water quality — Gamma-ray emitting radionuclides — Test method using high resolution gamma-ray spectrometry

Qualité de l'eau — Radionucléides émetteurs gamma — Méthode d'essai par spectrométrie gamma à haute résolution

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 10703:2021

https://standards.iteh.ai/catalog/standards/sist/64a798f4-2a59-4a6c-9c5d-95250efe6c1d/iso-10703-2021

Reference number ISO 10703:2021(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 10703:2021</u> https://standards.iteh.ai/catalog/standards/sist/64a798f4-2a59-4a6c-9c5d-95250efe6c1d/iso-10703-2021

COPYRIGHT PROTECTED DOCUMENT

© ISO 2021

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Contents

Fore	word		v			
Intro	oduction	1	vi			
1	Scope	9				
2	Norm	ative references				
3	Terms and definitions					
4	Symbols					
5	5	iple				
	Reference sources					
6	6.1	Source(s) for energy calibration				
	6.2	Reference source(s) for efficiency calibration	5			
		6.2.1 General.6.2.2 Reference sources for laboratory systems.				
		6.2.3 Reference sources used with numerical methods				
7	Doog	ents				
	0					
8	Gamr 8.1	na-ray spectrometry equipment General description	6			
	8.2					
	8.3	Detector types High voltage power supply DARD PREVEV	7			
	8.4	Preamplifier Cryostat or electric coler clards.iteh.ai)				
	8.5	Cryostat or electric cooler ClarCos.ILCO.al)	7 7			
	8.6 8.7	Shielding Analogue or digital acquisition electronics				
	0.7	8.7.1 http:// General.te.itub.usionet.logictic/usic/star.20864.0.250.4.50.0.574				
		8.7.1 http://energide.ite/ai/catalog/standards/sist/64a798f4-2a59-4a6c-9c5d- 8.7.2 Analogue electronic (ADC)-10703-2021				
	0.0	8.7.3 Digital electronic (DSP)	8			
	8.8	Computer, including peripherical devices and software				
9		ear decay data				
10	Samp	ling				
11	Proce	Procedure				
	11.1	Sample preparation				
		11.1.1 General				
		11.1.2 Direct measurement without preparation11.1.3 Evaporation without iodine retention				
		11.1.3 Evaporation with iodine retention				
	11.2	Calibration				
		11.2.1 General				
		11.2.2 Energy calibration				
	_	11.2.3 Efficiency calibration				
12	Expression of results 12.1 Calculation of the activity concentration					
	12.1	12.1.1 General				
		12.1.2 Dead time and pile up corrections (see ISO 20042)				
		12.1.3 Decay corrections				
		12.1.4 True coincidence summing				
	12.2	Standard uncertainty				
	12.3 12.4	Decision threshold				
	12.1	Limits of the coverage intervals				
		12.5.1 Limits of the probabilistically symmetric coverage interval				

		12.5.2 The shortest coverage interval	
	12.6	Corrections for contributions from other radionuclides and background	
		12.6.1 General	
		12.6.2 Contribution from other radionuclides	
		12.6.3 Contribution from background	
13	Test re	eport	
Annex	A (info	ormative) Example of a carrier solution which can be added to the wat	er
 12.6.1 General	er		
	A (info sampl	ormative) Example of a carrier solution which can be added to the wate le when waste water from a nuclear power plant is investigated	er 21
Annex	A (info sampl B (info	ormative) Example of a carrier solution which can be added to the wate le when waste water from a nuclear power plant is investigated formative) True coincidence summing	er 21
Annex	A (info sampl B (info C (info	ormative) Example of a carrier solution which can be added to the wate le when waste water from a nuclear power plant is investigated formative) True coincidence summing ormative) Calculation of the activity concentration from a gamma spec	er 21 22 trum

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 10703:2021</u> https://standards.iteh.ai/catalog/standards/sist/64a798f4-2a59-4a6c-9c5d-95250efe6c1d/iso-10703-2021

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 147, *Water quality,* subcommittee SC 3, *Radioactivity measurements,* in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC¹230, *Water analysis* in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).²⁰²¹

This third edition cancels and replaces the second edition (ISO 10703:2007), which has been technically revised.

The main changes compared to the previous edition are as follows:

- new common Introduction;
- Scope enlarged to emergency situation and to wastewater, upper dead time increase to 10 %;
- the sample storage conditions are in compliance with ISO 5667-3 (see <u>Clause 10</u>);
- modification of the reference source for calibration (see <u>6.2</u>);
- calibration efficiency determination by Monte Carlo method (see <u>11.2.3</u>);
- complete revision of the pulse pile up and dead time;
- complete revision of the true coincidence summing subclause (see <u>12.1.4</u>);
- addition of the correction factor for dead time and pile up (see <u>12.1.2</u>);
- introduction of the shortest coverage interval in accordance with the new ISO 11929 series (see <u>12.5.2</u>);
- modification of the test report (see <u>Clause 13</u>).

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

Introduction

Radioactivity from several naturally-occurring and anthropogenic sources is present throughout the environment. Thus, water bodies (e.g. surface waters, ground waters, sea waters) can contain radionuclides of natural, human-made, or both origins.

- Natural radionuclides, including ⁴⁰K, ³H, ¹⁴C, and those originating from the thorium and uranium decay series, in particular ²²⁶Ra, ²²⁸Ra, ²³⁴U, ²³⁸U, and ²¹⁰Pb, can be found in water for natural reasons (e.g. desorption from the soil and washoff by rain water) or can be released from technological processes involving naturally occurring radioactive materials (e.g. the mining and processing of mineral sands or phosphate fertilizer production and use).
- Human-made radionuclides, such as transuranium elements (americium, plutonium, neptunium, curium), ³H, ¹⁴C, ⁹⁰Sr, and gamma emitting radionuclides can also be found in natural waters. Small quantities of these radionuclides are discharged from nuclear fuel cycle facilities into the environment as the result of authorized routine releases. Some of these radionuclides used for medical and industrial applications are also released into the environment after use. Anthropogenic radionuclides are also found in waters as a result of past fallout contaminations resulting from the explosion in the atmosphere of nuclear devices and accidents such as those that occurred in Chernobyl and Fukushima.

Radionuclide activity concentration in water bodies can vary according to local geological characteristics and climatic conditions and can be locally and temporally enhanced by releases from nuclear installation during planned, existing and emergency exposure situations^[7]. Drinking water may thus contain radionuclides at activity concentrations which could present a risk to human health.

The radionuclides present in liquid eff**(uents are usually controlled** before being discharged into the environment^[8]. Water bodies and drinking waters are monitored for their radioactivity content as recommended by the World Health Organization (WHO)^[9] so that proper actions can be taken to ensure that there is no adverse health effect to the public. Following these international recommendations, national regulations usually specify radionuclide authorized concentration limits for liquid effluent discharged to the environment and radionuclide guidance levels for water bodies and drinking waters for planned, existing and emergency exposure situations. Compliance with these limits can be assessed using measurement results with their associated uncertainties as specified by ISO/IEC Guide 98-3 and ISO 5667-20.

Depending on the exposure situation, there are different limits and guidance levels that would result in an action to reduce health risk. As an example, during a planned or existing situation, the WHO guidelines for guidance level in drinking water is 10 Bq·l⁻¹ for ^{134/137}Cs and ¹³¹I activity concentration, 1 Bq·l⁻¹ for ²⁴¹Am and 0,1 Bq·l⁻¹ for ²¹⁰Pb.

NOTE 1 The guidance level is the activity concentration with an intake of 2 l/d of drinking water for one year that results in an effective dose of 0,1 mSv/a for members of the public. This is an effective dose that represents a very low level of risk and which is not expected to give rise to any detectable adverse health effects^[9].

In the event of a nuclear emergency, the WHO Codex guideline levels^[10] mentioned that the activity concentration for infant food might not be greater than 1 000 Bq·kg⁻¹ for ^{134/137}Cs, 100 Bq·kg⁻¹ for ¹³¹I and 1 Bq·kg⁻¹ for ²⁴¹Am. For food other than infant food, the activity concentration might not be greater than 1 000 Bq·kg⁻¹ for ^{134/137}Cs, 100 Bq·kg⁻¹ for ¹³¹I and 10 Bq·kg⁻¹ for ²⁴¹Am.

NOTE 2 The Codex guidelines levels (GLs) apply to radionuclides contained in food destined for human consumption and traded internationally, which have been contaminated following a nuclear or radiological emergency. These GLs apply to food after reconstitution or as prepared for consumption, i.e. not to dried or concentrated food, and are based on an intervention exemption level of 1 mSv in a year for members of the public (infant and adult)^[10].

Thus, the test method can be adapted so that the characteristic limits, decision threshold, detection limit and uncertainties ensure that the radionuclide activity concentrations test results can be verified to be below the guidance levels required by a national authority for either planned/existing situations or for an emergency situation^{[11][12]}.

Usually, the test methods can be adjusted to measure the activity concentration of the radionuclide(s) in either wastewaters before storage or in liquid effluents before discharge to the environment. The test results will enable the plant/installation operator to verify that, before their discharge, wastewaters/ liquid effluent radioactive activity concentrations do not exceed authorized limits.

The test method described in this document may be used during planned, existing and emergency exposure situations as well as for wastewaters and liquid effluents with specific modifications that could increase the overall uncertainty, detection limit, and threshold.

The test method may be used for water samples after proper sampling, sample handling, and test sample preparation (see the relevant part of the ISO 5667 series).

This document has been developed to answer the need of test laboratories carrying out these measurements, that are sometimes required by national authorities, as they may have to obtain a specific accreditation for radionuclide measurement in drinking water samples.

This document is one of a set of International Standards on test methods dealing with the measurement of the activity concentration of radionuclides in water samples.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 10703:2021</u> https://standards.iteh.ai/catalog/standards/sist/64a798f4-2a59-4a6c-9c5d-95250efe6c1d/iso-10703-2021

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 10703:2021</u> https://standards.iteh.ai/catalog/standards/sist/64a798f4-2a59-4a6c-9c5d-95250efe6c1d/iso-10703-2021

Water quality — Gamma-ray emitting radionuclides — Test method using high resolution gamma-ray spectrometry

WARNING — Persons using this document should be familiar with normal laboratory practice. This document does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices and to determine the applicability of any other restrictions.

IMPORTANT — It is absolutely essential that tests conducted according to this document be carried out by suitably trained staff.

1 Scope

This document specifies a method for the physical pre-treatment and conditioning of water samples and the determination of the activity concentration of various radionuclides emitting gamma-rays with energies between 40 keV and 2 MeV, by gamma-ray spectrometry according to the generic test method described in ISO 20042.

The method is applicable to test samples of drinking water, rainwater, surface and ground water as well as cooling water, industrial water, domestic and industrial wastewater after proper sampling, sample handling, and test sample preparation (filtration when necessary and taking into account the amount of dissolved material in the water). This method is only applicable to homogeneous samples or samples which are homogeneous via timely filtration. **CS.Itel.al**)

The lowest limit that can be measured without concentration of the sample or by using only passive shield of the detection system is about $5\cdot10^{-2}$ Bq/1 for e.g. $^{137}Cs^{10}$. The upper limit of the activity corresponds to a dead time of 10 %. Higher dead times may be used but evidence of the accuracy of the dead-time correction is required.

Depending on different factors, such as the energy of the gamma-rays, the emission probability per nuclear disintegration, the size and geometry of the sample and the detector, the shielding, the counting time and other experimental parameters, the sample may require to be concentrated by evaporation if activities below $5 \cdot 10^{-2}$ Bq/l need to be measured. However, volatile radionuclides (e.g. radon and radioiodine) can be lost during the source preparation.

This method is suitable for application in emergency situations.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 3696, Water for analytical laboratory use — Specification and test methods

ISO 5667-1, Water quality — Sampling — Part 1: Guidance on the design of sampling programmes and sampling techniques

ISO 5667-3, Water quality — Sampling — Part 3: Preservation and handling of water samples

ISO 5667-10, Water quality — Sampling — Part 10: Guidance on sampling of waste water

ISO 5667-14, Water quality — Sampling — Part 14: Guidance on quality assurance and quality control of environmental water sampling and handling

1) The sample geometry: 3l Marinelli beaker; detector: GE HP N relative efficiency 55 %; counting time: 18h.

ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories ISO 80000-10, Quantities and units — Part 10: Atomic and nuclear physics

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 80000-10 and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at <u>http://www.electropedia.org</u>

3.1

blank sample

container of an identical composition to the one used for the water test sample, filled with demineralized water

3.2

dead time

time during spectrum acquisition (real time) during which pulses are not recorded or processed

Note 1 to entry: Dead time is expressed in percent, calculated as follows: real time minus live time, all divided by real time then multiplied by 100 Teh STANDARD PREVIEW

3.3

(standards.iteh.ai)

dead time correction correction to be applied to the observed number of pulses to take into account the number of pulses lost during the *dead time* (3.2)

https://standards.iteh.ai/catalog/standards/sist/64a798f4-2a59-4a6c-9c5d-95250efe6c1d/iso-10703-2021

3.4 decay constant

λ

quotient of the rate at which a population of radioactive atoms decreases because of <u>radioactive decay</u> by the size of that population of radioactive atoms

Note 1 to entry: It can also be expressed as the quotient of dP by dt,

$$\lambda = \frac{\mathrm{d}P}{\mathrm{d}t} = -\frac{1}{N} \frac{\mathrm{d}N}{\mathrm{d}t}$$

where

- d*P* is the probability of a given nucleus undergoing a spontaneous nuclear transition from that energy state in the time interval d*t*;
- *N* is the number of nuclei of concern existing at time *t*.

Note 2 to entry: The time required for half of the original population of radioactive atoms to decay is called the <u>half-life</u>. The relationship between the half-life, T1/2, and the decay constant is given by $T1/2 = \ln(2)/\lambda$.

3.5

efficiency

ratio of the number of gamma photons detected in the full energy peak to the number of the same type emitted by the radiation source in the same time interval, under stated conditions of detection

3.6

energy resolution

measure, at a given energy, of the smallest difference between the energy of two gamma-rays which can be distinguished by the apparatus used for *gamma-ray spectrometry* (3.10)

Note 1 to entry: The energy resolution is measured as the full width at half maximum height of the energy peak (FWHM).

3.7

full energy peak

peak of spectral response corresponding to the total absorption of the photon energy in the detector by the photoelectric effect or by consecutive photon interactions of pair production (only for photon energy >1 022 keV), Compton scattering and photoelectric absorption

3.8

gamma cascade

two or more different gamma-photons emitted successively from one nucleus when it de-excites through one or more intermediate energy levels

3.9

gamma radiation

electromagnetic radiation emitted in the process of nuclear transition or particle annihilation

3.10

gamma-ray spectrometry

method of measuring gamma-rays yielding the energy spectrum/of the gamma radiation (3.9)

3.11

pile-up

(standards.iteh.ai)

processing by a radiation spectrometer of pulses resulting from the simultaneous absorption of particles, or photons, originating from different decaying nuclei, in the radiation detector https://standards.iteh.ai/catalog/standards/sist/64a798t4-2a59-4a6c-9c5d-

Note 1 to entry: As a result, pulses are counted as one single particle or photon with an energy between the individual energies and the sum of these energies.

3.12

transition probability

probability of de-excitation of the nucleus occurring by one specific transition at a given energy state to a less energetic state or to the ground state

4 Symbols

For the purposes of this document, the following symbols apply.

V	Volume of the water sample for test	l
A	Activity of each radionuclide in calibration source, at the calibration time	Bq
c _A ,c _{A,c}	Activity concentration of each radionuclide, without and with corrections	Bq·l ⁻¹
t _g	Test sample spectrum counting time	S
t_0	Background spectrum counting time	S
t _i	Time between the reference time and the start of the measuring time	S
ts	Calibration spectrum counting time	S
$n_{N,E}$, $n_{N0,E}$, $n_{Ns,E}$	Number of counts in the net area of the peak, at energy <i>E</i> , in the test sample spectrum, in the background spectrum and in the calibration spectrum, respectively	

		r
$n_{\mathrm{g},E}$, $n_{\mathrm{g}0,E}$, $n_{\mathrm{gs},E}$	Number of counts in the gross area of the peak, at energy <i>E</i> , in the test sample spectrum, in the background spectrum and in the calibration spectrum, respectively	
$n_{\mathrm{b},E}$, $n_{\mathrm{b}0,E}$, $n_{\mathrm{b}s,E}$	Number of counts in the background of the peak, at energy <i>E</i> , in the test sample spectrum in the background spectrum and in the calibration spectrum, respectively	
ε_E	Detection efficiency at energy <i>E</i> at actual measurement geometry	
f_E	Correction factor considering all necessary corrections	
f _d	Correction factor for decay for a reference date	
f _{cl,E}	Correction factor for coincidence losses (summing-out)	
$f_{\mathrm{su},E}$	Correction factor for summing-in effects by coincidences	
f _{dt pu,E}	Correction factor for dead time and pile up	
P_E	Probability of the emission of a gamma-ray with energy E of each radio- nuclide, per decay	
λ	Decay constant of each radionuclide	s ⁻¹
$u(c_A), u(c_{A,c}), u(fit)$	Standard uncertainty associated with the measurement result (without and with corrections) and with fitting efficiency curve respectively	Bq·l ⁻¹
U	Expanded uncertainty calculated with $k = 2$.	Bq·l ⁻¹
c_A^* , $c_{A, \mathrm{c}}^*$	Decision threshold, without and with corrections	Bq•l⁻¹
$c_A^{\#}$, $c_{A, ext{c}}^{\#}$	Detection limit, without and with corrections	Bq·l⁻¹
c^{\triangleleft}_A , c^{\triangleright}_A	Lower and upper limits of the probabilistically symmetric coverage interval	Bq·l ⁻¹
$c_A^<$, $c_A^>$	Lower and upper limits of the shortest coverage interval https://standards.iteb.ai/catalog/standards/sist/64a798t4-2a59-4a6c-9c5d-	Bq•l⁻¹

95250efe6c1d/iso-10703-2021

5 Principle

Gamma-rays produce electron-hole pairs when interacting with matter. When a voltage is applied across a semiconductor detector, these electron hole-pairs are, after proper amplification, detected as current pulses. The pulse height is related to the energy absorbed from the gamma-photon or photons in the resolving time of the detector and electronics. By discriminating between the height of the pulses, a gamma-ray pulse height spectrum is obtained. After analysis of the spectrum, the various peaks are assigned to the radionuclides which emitted the corresponding gamma-rays using an established detector energy calibration response curve. The concentration of the radionuclides present in the sample is calculated using the established energy-dependent detector efficiency curve.

The determination of the activity concentration of radionuclides emitting gamma-rays with energy below 40 keV and above 2 MeV is also possible within the scope of this document, provided both the calibration of the measuring system and the shielding are adapted to this purpose.

6 Reference sources

6.1 Source(s) for energy calibration

The energy calibration of the spectrometer shall be established using one or more sources containing radionuclides that emit gamma-rays that cover the energy range of interest. Sources can be of any form but the dead time of the spectrometer for the measurements shall be such that the full energy peak shape is not distorted and pulse pile-up is avoided.

The number of peaks (full energy peaks) required depends on the order of polynomial needed for the energy vs. channel calibration curve; normally 5 to 10 peaks should be sufficient. Sources containing