INTERNATIONAL STANDARD

First edition 2001-02-01

Industrial automation systems and integration — Product data representation and exchange —

Part 507: Application interpreted construct: Geometrically bounded surface

Systèmes d'automation industrielle et intégration — Représentation et échange de données de produits —

Partie 507: Établissement interprété d'application: Surface limitée géométriquement https://standards.iteh.ai/catalog/stan

Reference number ISO 10303-507:2001(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/DIS 10303-239

https://standards.iteh.ai/catalog/standards/sist/a06fe7b8-ae27-4110-b740-77aa6139f058/isodis-10303-239

© ISO 2001

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.ch Web www.iso.ch

Printed in Switzerland

Contents

1	Scope	1				
2	Normative references	2				
3	,,	3				
	3.1 Terms defined in ISO 10303–1	3				
	3.2 Terms defined in ISO 10303–42	3				
	3.3 Terms defined in ISO 10303–202	4				
	3.4 Other terms and definitions	4				
		4				
4	EXPRESS short listing	4				
4	-	47				
	· · · · · · · · · · · · · · · · · · ·	/				
	4.2 aic_geometrically_bounded_surface schema entity definition: geometrically_bounded	7				
		7				
		0				
		0				
		2				
	4.3.3 gbsf_check_surface	8				
Annex A (normative) Short names of entities						
Ar	nnex B (normative) Information object registration	24				
	B.1 Document identification $\frac{1800018}{10303-23}$	24				
		24				
Ar		25				
Ar	Annex D (informative) Computer interpretable listings					
Index						

Figures

Figure C.1	EXPRESS-G diagram 1 of 18	26
Figure C.2	EXPRESS-G diagram 2 of 18	27
Figure C.3	EXPRESS-G diagram 3 of 18	28
Figure C.4	EXPRESS-G diagram 4 of 18	29
Figure C.5	EXPRESS-G diagram 5 of 18	30
Figure C.6	EXPRESS-G diagram 6 of 18	31
Figure C.7	EXPRESS-G diagram 7 of 18	32
Figure C.8	EXPRESS-G diagram 8 of 18	33
Figure C.9	EXPRESS-G diagram 9 of 18	34
Figure C.10	EXPRESS-G diagram 10 of 18	35

Figure C.11	EXPRESS-G diagram 11 of 18	36
Figure C.12	EXPRESS-G diagram 12 of 18	37
Figure C.13	EXPRESS-G diagram 13 of 18	38
Figure C.14	EXPRESS-G diagram 14 of 18	39
Figure C.15	EXPRESS-G diagram 15 of 18	40
Figure C.16	EXPRESS-G diagram 16 of 18	41
Figure C.17	EXPRESS-G diagram 17 of 18	42
Figure C.18	EXPRESS-G diagram 18 of 18	43
Tables		

Table A.1 Short names of entities 23

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/DIS 10303-239

https://standards.iteh.ai/catalog/standards/sist/a06fe7b8-ae2704b740-77aa6139f058/isc dis-10303-239

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

International Standard ISO 10303-507 was prepared by Technical Committee ISO/TC 184 *Industrial automation* systems and integration, Subcommittee SC 4, *Industrial data*.

This International Standard is organized as a series of parts, each published separately. The structure of this International Standard is described in ISO 10303-1.

Each part of this International Standard is a member of one of the following series: description methods, implementation methods, conformance testing methodology and framework, integrated generic resources, integrated application resources, application protocols, abstract test suites, application interpreted constructs, and application modules. This part is a member of the application interpreted construct series.

A complete list of parts of ISO 10303 is available from the Internet:

<http://www.nist.gov/sc4/editing/step/titles/>

Annexes A and B form a normative part of this part of ISO 10303. Annexes C and D are for information only.

Introduction

ISO 10303 is an International Standard for the computer-interpretable representation and exchange of product data. The objective is to provide a neutral mechanism capable of describing product data throughout the life cycle of a product independent from any particular system. The nature of this description makes it suitable not only for neutral file exchange, but also as a basis for implementing and sharing product databases and archiving.

This International Standard is organized as a series of parts, each published separately. The parts of ISO 10303 fall into one of the following series: description methods, integrated resources, application interpreted constructs, application protocols, abstract test suites, implementation methods, and conformance testing. The series are described in ISO 10303–1. This part of ISO 10303 is a member of the application interpreted constructs series.

An application interpreted construct (AIC) provides a logical grouping of interpreted constructs that supports a specific functionality for the usage of product data across multiple application contexts. An interpreted construct is a common interpretation of the integrated resources that supports shared information requirements among application protocols.

This document specifies the application interpreted construct for the description of geometric shapes by means of geometrically bounded surface models. It includes the geometric resources to define purely geometrically bounded models that consist of elementary and sculptured curves and surfaces.

https://standards.iteh.ai/catalog/standards/sist/a06fe7b8-ae27-4110-b740-77aa6139f058/isodis-10303-239

Industrial automation systems and integration — Product data representation and exchange —

Part 507: Application interpreted construct: Geometrically bounded surface

1 Scope

This part of ISO 10303 specifies the interpretation of the integrated resources in order to satisfy requirements for the representation of geometric shapes by means of geometrically bounded surface models.

The following are within the scope of this part of ISO 10303:

- 3D points;
- points defined in the parameter space of curves or surfaces;
- 3D curves;
- curves defined in the parameter space of surfaces; **OS** it **e h**. **a** i)

NOTE - Such curves are also known as pcurves or cons, which are acronyms for parametrised curve and curve on surface.

- the elementary curves line, circle, ellipse, parabola, and hyperbola;
- intersection curves;
- polylines that consist of at least three points;
- surfaces;
- the elementary surfaces plane, cylinder, cone, torus, and sphere;
- swept surfaces created by rotation or linear extrusion of a curve;
- sculptured curves and surfaces;
- trimming of curves and surfaces;
- composition of curves and surfaces;
- replication of curves, surfaces, and surface models;
- © ISO 2001 All rights reserved

— 3D offsets of curves and surfaces.

The following are outside the scope of this part of ISO 10303:

- unbounded geometry;
- self-intersecting geometry;
- geometry in a 2D cartesian coordinate space;
- replication of points;
- topological entities.

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this part of ISO 10303. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this part of ISO 10303 are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards.

ISO/IEC 8824–1:1998, Information technology – Abstract Syntax Notation One (ASN.1): Specification of basic notation.

https://standards.iteh.ai/catalog/standards/sist/a06fe7b8-ae27-4110-b740-77aa6139f058/iso-ISO 10303–1:1994, Industrial automation systems and integration – Product data representation and exchange – Part 1 : Overview and fundamental principles.

ISO 10303–11:1994, Industrial automation systems and integration – Product data representation and exchange – Part 11 : Description methods: The EXPRESS language reference manual.

ISO 10303–41:1994, Industrial automation systems and integration – Product data representation and exchange – Part 41 : Integrated generic resources: Fundamentals of product description and support.

ISO 10303–42:1994, Industrial automation systems and integration – Product data representation and exchange – Part 42 : Integrated generic resources: Geometric and topological representation.

ISO 10303–43:1994, Industrial automation systems and integration – Product data representation and exchange – Part 43 : Integrated generic resources: Representation structures.

ISO 10303–202:1996, Industrial automation systems and integration – Product data representation and exchange: – Part 202: Application protocol: Associative draughting.

NOTE - ISO 10303-202 is referenced normatively solely for the definition of the term AIC.

© ISO 2001 – All rights reserved

2

3 Terms, definitions, and abbreviations

3.1 Terms defined in ISO 10303–1

For the purposes of this part of ISO 10303, the following terms defined in ISO 10303-1 apply:

—	abstract test suite (ATS);
—	application;
—	application context;
_	application protocol (AP);
_	data;
_	data exchange;
_	generic resource;
—	implementation method; STANDARD PREVIEW
—	information; (standards.iteh.ai)
—	integrated resource;
—h	ISO/DIS 10303-239 interpretation; ls.iteh.ai/catalog/standards/sist/a06fe7b8-ae27-4110-b740-77aa6139f058/iso- dis-10303-239
_	model;
—	product;
_	product data;
—	structure.
3.2	Terms defined in ISO 10303–42

For the purposes of this part of ISO 10303, the following terms defined in ISO 10303-42 apply:

- boundary;
- coordinate space;
- curve;

ISO 10303-507:2001(E)

- dimensionality;
- domain;
- parameter space;
- self-intersect;
- surface.

Terms defined in ISO 10303-202 3.3

For the purposes of this part of ISO 10303, the following terms defined in ISO 10303-202 apply:

3.3.1

application interpreted construct (AIC)

a logical grouping of interpreted constructs that supports a specific function for the usage of product data across multiple application contexts.

3.4 Other terms and definitions

For the purposes of this part of ISO 10303, the following terms and definitions apply:

3.4.1

geometrically bounded

a description for a geometric shape that uses only values in coordinate space to define its boundaries and connectivity, and no topological constructs. ards/sist/a06fe7b8-ae27-4110-b740-77aa6139f058/iso

3.5 Abbreviations

For the purposes of this part of ISO 10303, the following abbreviations apply:

- AIC application interpreted construct
- AP application protocol
- ATS abstract test suite

EXPRESS short listing 4

This clause specifies the EXPRESS schema that uses elements from the integrated resources and contains the types, entity specializations, and functions that are specific to this part of ISO 10303.

NOTE 1 - There may be subtypes and items of select lists that appear in the integrated resources that are not imported into the AIC. Constructs are eliminated from the subtype tree or select list through the use of the implicit interface rules of ISO 10303-11. References to eliminated constructs are outside the scope of the AIC. In some cases, all items of the select list are eliminated. Because AICs are intended to be implemented in the context of an application protocol, the items of the select list will be defined by the scope of the application protocol.

This application interpreted construct provides a consistent set of geometric entities for the definition of surface models that consist of points, elementary or sculptured curves, and elementary or sculptured surfaces. Geometry shall be bounded; no topological entities are used for bounding.

EXPRESS specification:

```
*)
SCHEMA aic_geometrically_bounded_surface;
 REFERENCE FROM support_resource_schema ( -- ISO 10303-41
     bag_to_set);
 USE FROM geometric_model_schema (
                                     -- ISO 10303-42
     geometric_set);
 USE FROM geometry_schema (
                                            -- ISO 10303-42
     axis1_placement, TANDARD PREVIEW
     axis2_placement_2d,
     axis2_placement_3d, standards.iteh.ai)
     b_spline_curve_with_knots,
     D_spline_surface,
b_spline_surface_with_knots,
bezier_curve,
bezier_surface,
dis-10303-239
     b_spline_surface,
 bezier_curve,
     bezier_surface,
     boundary_curve,
     bounded_pcurve,
     bounded_surface_curve,
     cartesian_point,
     cartesian_transformation_operator_3d,
     circle,
     composite_curve,
     composite_curve_on_surface,
     composite_curve_segment,
     conical surface,
     curve,
     curve_bounded_surface,
     curve_replica,
     cylindrical_surface,
     degenerate_pcurve,
     degenerate_toroidal_surface,
     direction,
     ellipse,
     evaluated_degenerate_pcurve,
```

```
geometric_representation_context,
    hyperbola,
    intersection_curve,
    line,
    offset_curve_3d,
    offset_surface,
   outer_boundary_curve,
   parabola,
   pcurve,
   plane,
   point,
   point_on_curve,
   point_on_surface,
   polyline,
    quasi_uniform_curve,
    quasi_uniform_surface,
    rational_b_spline_curve,
    rational_b_spline_surface,
    rectangular_composite_surface,
    rectangular_trimmed_surface,
    reparametrised_composite_curve_segment,
    seam_curve,
    spherical_surface,
    surface,
    surface_curve, STANDARD PREVIEW
    surface_of_linear_extrusion,
    surface_of_revolution, and ards.iteh.ai)
    surface_patch,
    surface_replica,
    swept_surface,
httpstoroidal_surface.talog/standards/sist/a06fe7b8-ae27-4110-b740-77aa6139f058/iso-
    trimmed_curve,
    uniform curve,
    uniform surface,
   vector);
USE FROM product_property_representation_schema (
    shape_representation);
                                          -- ISO 10303-41
USE FROM representation_schema (
                                         -- ISO 10303-43
   definitional_representation,
   mapped_item,
   parametric_representation_context,
   representation,
   representation_item,
    representation_map);
```

```
(*
```

NOTE 2 - The schemas referenced above can be found in the following parts of ISO 10303:

geometric_model_schema	ISO 10303-42
geometry_schema	ISO 10303-42
<pre>product_property_representation_schema</pre>	ISO 10303-41
representation_schema	ISO 10303-43
<pre>support_resource_schema</pre>	ISO 10303-41

4.1 Fundamental concepts and assumptions

The following entities are intended to be independently instantiated in the application protocol schemas that use this AIC:

- geometrically_bounded_surface_shape_representation.

4.2 aic_geometrically_bounded_surface schema entity definition: geometrically_bounded_surface_shape_representation

A geometrically_bounded_surface_shape_representation describes the shape or portions of the shape of a **product** using a surface model without topology.

NOTE 1 - Entity **product** is not included in this part of ISO 10303.

The highest level entity of this part of ISO 10303 is **geometrically_bounded_surface_shape_representation**. It is a **shape_representation** as defined in ISO 10303-41 consisting of **geometric_sets**. **Points**, **curves**, and **surface**s may be contained in a **geometric_set** provided they are of the same dimensionality as defined in ISO 10303-42, rule **compatible_dimension**. A **geometrically_bounded_surface_shape_representation** shall include at least one **surface**. The geometric entities that are exclusively used to support the definition of other geometric entities shall not themselves exist in the sets of **elements** of a **geometric_set**. All geometric entities shall be of dimensionality three except for two-dimensional geometry that is used for the purpose of defining **pcurves**. The use of one-dimensional **cartesian_points** is excluded.

All unbounded curves and surfaces shall be explicitly trimmed. The boundaries of curves shall be defined either by points on curves and explicit associations between these points and curves, or by parameter values. The boundaries of surfaces shall be defined either by curves on surfaces and explicit associations between these curves and surfaces, or by parameter values.

The items of a geometrically_bounded_surface_shape_representation may also be of type mapped_item, which is defined in ISO 10303-43, or axis2_placement_3d. These are used to assemble one or several geometrically_bounded_surface_shape_representations into one other geometrically_bounded_surface_shape_representation.

The WHERE-rules of this entity restrict the use of the entity data types that are imported from ISO 10303-42 and ISO 10303-43 according to the statements above. Most of these validations of entity type and constraints are specified in the following three functions:

- gbsf_check_point;
- gbsf_check_curve;
- gbsf_check_surface.

The three functions shall be applied to all **elements** of all **geometric_sets** in a **geometrically_bounded_surface_shape_representation**. The functions automatically assess all **points**, **curves**, and **surface** that are referenced by these **elements**. For this the functions are called recursively.

EXAMPLE A **pcurve** references both a **curve** and a **surface**. Function **gbsf_check_curve** validates not only the **pcurve**, but also its underlying geometry. It will, therefore, not only call itself, but also **gbsf_check_surface**.

NOTE 2 - An application protocol that uses this part of ISO 10303 should explicitly permit that the **shape_-**representation entity may be instantiated as a **geometrically_bounded_surface_shape_representation**.

EXPRESS specification:

) ENTITY geometrically_bounded_surface_shape_representation SUBTYPE OF (shape_representation); WHERE WR1 : SIZEOF (QUERY (it < SELF.items | NOT (SIZEOF (['AIC_GEOMETRICALLY_BOUNDED_SURFACE.GEOMETRIC_SET', 'AIC_GEOMETRICALLY_BOUNDED_SURFACE.MAPPED_ITEM', MUPS.//'AIC_GEOMETRICALLY_BOUNDED_SURFACE.AXIS2_PLACEMENT_3D'] * TYPEOF (it)) = 1))) = 0;WR2 : SIZEOF (QUERY (it <* SELF.items | SIZEOF (['AIC_GEOMETRICALLY_BOUNDED_SURFACE.GEOMETRIC_SET', 'AIC_GEOMETRICALLY_BOUNDED_SURFACE.MAPPED_ITEM'] * TYPEOF (it)) = 1)) > 0;WR3 : SIZEOF (QUERY (mi <* QUERY (it <* SELF.items | 'AIC_GEOMETRICALLY_BOUNDED_SURFACE.MAPPED_ITEM' IN TYPEOF (it)) NOT (('AIC_GEOMETRICALLY_BOUNDED_SURFACE.' + 'GEOMETRICALLY_BOUNDED_SURFACE_SHAPE_REPRESENTATION' IN TYPEOF (mi\mapped_item.mapping_source.mapped_representation)) AND (SIZEOF(QUERY (mr it <* mi\mapped_item.mapping_source.mapped_representation.items ('AIC_GEOMETRICALLY_BOUNDED_SURFACE.GEOMETRIC_SET' IN TYPEOF (mr_it)))) > 0)))) = 0; WR4 : SIZEOF (QUERY (gs <* QUERY (it <* SELF.items 'AIC_GEOMETRICALLY_BOUNDED_SURFACE.GEOMETRIC_SET' IN TYPEOF (it)) | NOT (SIZEOF (QUERY (pnt <* QUERY (gsel <* gs\geometric set.elements | 'AIC_GEOMETRICALLY_BOUNDED_SURFACE.POINT' IN TYPEOF (gsel)) | NOT (gbsf_check_point(pnt))) = 0))) = 0;

```
WR5 : SIZEOF (QUERY (gs <* QUERY (it <* SELF.items |
        'AIC_GEOMETRICALLY_BOUNDED_SURFACE.GEOMETRIC_SET' IN TYPEOF (it)) |
       NOT (SIZEOF (QUERY (cv <* QUERY (gsel <*
       gs\geometric_set.elements |
        'AIC_GEOMETRICALLY_BOUNDED_SURFACE.CURVE' IN TYPEOF (gsel))
       NOT (gbsf_check_curve(cv)))) = 0))) = 0;
 WR6 : SIZEOF (QUERY (gs <* QUERY (it <* SELF.items |
        'AIC_GEOMETRICALLY_BOUNDED_SURFACE.GEOMETRIC_SET' IN TYPEOF (it)) |
       NOT (SIZEOF (QUERY (sf <* QUERY (gsel <*
        gs\geometric_set.elements |
        'AIC_GEOMETRICALLY_BOUNDED_SURFACE.SURFACE' IN TYPEOF (gsel))
       NOT (gbsf_check_surface(sf)))) = 0))) = 0;
 WR7 : SIZEOF (QUERY (gs <* QUERY (it <* SELF.items |
        'AIC GEOMETRICALLY BOUNDED SURFACE.GEOMETRIC SET' IN TYPEOF (it))
        SIZEOF (QUERY (gsel <* gs\geometric_set.elements |</pre>
        'AIC_GEOMETRICALLY_BOUNDED_SURFACE.SURFACE'
        IN TYPEOF (gsel))) > 0)) > 0;
END_ENTITY;
(*
```

Formal propositions:

WR1: The items in a geometrically_bounded_surface_shape_representation shall be geometric_sets, mapped_items, or axis2_placement_3ds.

NOTE 3 - **Axis2_placement_3d** is a valid **mapped_item.mapping_target**. To include another **representation** into the list of **items** of a **geometrically_bounded_surface_shape_representation** (see WR3 for valid **mapped_items**), the **mapped_item.mapping_source.mapping_origin** may be any entity that is geometrically founded in the **geometric_representation_context** of the **mapped_representation**. If this entity is an **axis2_placement_3d**, the operator that maps the **mapped_representation** into the **geometrically_bounded_surface_shape_representation** corresponds to a transformation matrix with only translation and rotation enabled. If a **cartesian_transformation_operator_3d** is used as **mapping_origin**, scaling and mirroring are possible.

WR2: At least one of the items in a geometrically_bounded_surface_shape_representation shall be either a geometric_set or a mapped_item.

WR3: If there is a mapped_item in a geometrically_bounded_surface_shape_representation, the mapped_representation of its mapping_source shall be a geometrically_bounded_surface_shape_representation. This shape_representation shall include at least one geometric_set.

WR4: Each **point** that is among the **elements** of a **geometric_set** that is one of the **items** of a **geometrically_bounded_surface_shape_representation** shall be a valid **point**.

WR5: Each **curve** that is among the **elements** of a **geometric_set** that is one of the **items** of a **geometrically_bounded_surface_shape_representation** shall be a valid **curve**.

WR6: Each **surface** that is among the **elements** of a **geometric_set** that is one of the **items** of a **geometrically_bounded_surface_shape_representation** shall be a valid **surface**.