

Designation: A510/A510M - 11

Standard Specification for General Requirements for Wire Rods and Coarse Round Wire, Carbon Steel, and Alloy Steel¹

This standard is issued under the fixed designation A510/A510M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1. Scope*

- 1.1 This specification covers general requirements for carbon <u>and alloy</u> steel wire rods and uncoated coarse round wire in coils or straightened and cut lengths.
- 1.2 In case of conflict, the requirements in the purchase order, on the drawing, in the individual specification, and in this general specification shall prevail in the sequence named. Note1—A complete metric companion to this specification has been developed—Specification A510M; therefore, no metric equivalents are presented in this specification.
- 1.3The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard.
- 1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.

2. Referenced Documents

2.1 ASTM Standards:²

A5 Specification for High-Carbon Steel Joint Bars; Replaced by A3

A370 Test Methods and Definitions for Mechanical Testing of Steel Products A510M

A510M Specification for General Requirements for Wire Rods and Coarse Round Wire, Carbon Steel (Metric)

A700 Practices for Packaging, Marking, and Loading Methods for Steel Products for Shipment

A751 Test Methods, Practices, and Terminology for Chemical Analysis of Steel Products

A941 Terminology Relating to Steel, Stainless Steel, Related Alloys, and Ferroalloys

A1040 Guide for Specifying Harmonized Standard Grade Compositions for Wrought Carbon, Low-Alloy, and Alloy Steels

E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications

E30 Test Methods for Chemical Analysis of Steel, Cast Iron, Open-Hearth Iron, and Wrought Iron³ m-a5 10-a5 10m-

E112 Test Methods for Determining Average Grain Size E527

E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

2.2 SAE Standard: J1086Numbering Metals and Alloy-4

J 1086 Numbering Metals and Alloy

2.3 AIAG Standard:⁵

AIAGB-5 02.00 Primary Metals Identification Tag Application Standard

3. Terminology

- 3.1 Definitions of Terms Specific to This Standard:
- 3.1.1carbon steel—steel in which no minimum content is specified or required for aluminum, chromium, cobalt, columbium, molybdenum, nickel, titanium, tungsten, vanadium, or zirconium, or any other element added to obtain a desired alloying effect;

¹ This specification is under the jurisdiction of ASTM Committee A01 on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.03 on Steel Rod and Wire.

Current edition approved Nov: Dec. 15, $\frac{2008.2011}{2008.2011}$. Published January $\frac{2009.2012}{2012}$. Originally approved in 1964. Last previous edition approved in $\frac{20072008}{2008}$ as A510 – 078. DOI: $\frac{10.1520/A0510-08.10.1520/A0510_A0510_M-11$.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

³ Withdrawn. The last approved version of this historical standard is referenced on www.astm.org.

⁴ Available from Automotive Industry Action Group (AIAG), 26200 Lahser Rd., Suite 200, Southfield, MI 48033, http://www.aiag.org.

⁴ Available from Society of Automotive Engineers (SAE), 400 Commonwealth Dr., Warrendale, PA 15096-0001, http://www.sae.org.

Available from Automotive Industry Action Group (AIAG), 26200 Lahser Rd., Suite 200, Southfield, MI 48033, http://www.aiag.org.

when the specified minimum for copper does not exceed 0.40%; or when the maximum content specified for any of the following elements does not exceed these percentages: manganese 1.65, silicon 0.60, or copper 0.60.

- 3.1.1.1Discussion—In all carbon steels small quantities of certain residual elements unavoidably retained from raw materials are sometimes found that are not specified or required, such as copper, nickel, molybdenum, chromium, etc. These elements are considered as incidental and are not formally determined or reported. Elements may be specified to improve machinability of earbon steels such as sulfur and lead.
- 3.1.23.1.1 coarse round wire—from 0.035 to 0.999 in. in diameter, inclusive from 0.035 to 0.999 in. [0.90 to 25 mm] in diameter, inclusive, wire that is produced from hot-rolled wire rods or hot-rolled coiled bars by one or more cold reductions primarily for the purpose of obtaining a desired size with dimensional accuracy, surface finish, and mechanical properties. By varying the amount of cold reduction and other wire mill practices, including thermal treatment, a wide diversity of mechanical properties and finishes are made available.

3.1.2.1

- <u>3.1.1.1 Discussion</u>—Coarse round wire is designated by Steel Wire Gauge numbers, common fractions, or decimal parts of an inch, or metric equivalents. The Steel Wire Gauge system (US) is shown in Table 1 . Since the many gauge systems in use may cause confusion, the purchaser is encouraged to specify wire diameters in inches or decimal parts, or both.
- 3.1.3(English Units) and Table 1(M) (SI Units). Since the many gauge systems in use may cause confusion, the purchaser is encouraged to specify wire diameters in inches, decimal parts, or metric equivalents.
- <u>3.1.2</u> straightened and cut wire—wire that is produced from coils of wire by means of special machinery which straightens the wire and cuts it to a specified length.

3131

3.1.2.1 Discussion—The straightening operation may alter the mechanical properties of the wire, especially the tensile strength. The straightening operation may also induce changes in the diameter of the wire. The extent of the changes in the properties of the wire after cold straightening depends upon the kind of wire and also on the normal variations in the adjustments of the straightening equipment. It is therefore not possible to forecast the properties of straightened and cut wire and each kind of wire needs individual consideration. In most cases, the end use of straightened and cut wire is not seriously influenced by these changes.

3.1.4

<u>3.1.3</u> wire rods—rods that are hot rolled from billets to an approximate round cross section into coils of one continuous length. Rods are not comparable to hot-rolled bars in accuracy of cross section or surface finish and as a semifinished product are intended primarily for the manufacture of wire.

3.1.4.1

3.1.3.1 Discussion—Rod sizes from ⁷/₃₂ to ⁴/₆₄ in. [5.5 to 18.6 mm] in diameter, inclusive, are designated by fractions or decimal parts of an inch or metric equivalents as shown in Table 2 -(English Units) and Table 2(M) (SI Units).

4. Ordering Information

- ASTM A510/A510M-11
- 4.1 Orders for hot-rolled wire rods under this specification should include the following information: Im-a510-a510m-1
- 4.1.1Quantity (pounds),
- 4.1.1 Quantity (lbs [kg or Mg]),
- 4.1.2 Name of material (wire rods),
- 4.1.3 Diameter (Table 2),
- 4.1.4Chemical composition grade no. (Tables 3-6
- 4.1.4 Chemical composition grade no. (Guide A1040),
- 4.1.4.1If ordered to chemical composition, see Section 6.1.1.
- 4.1.4.2If ordered to tensile strength, with or without chemistry ranges, see 6.1.2.
- 4.1.5 Packaging,
- 4.1.6 ASTM designation and date of issue, and
- 4.1.7 Special requirements, if any.
- Note2—A typical ordering description is as follows: 100000 lb Wire Rods, 7/32 in., Grade 1010 in approximately 1000 lb Coils to ASTM A510 dated ________ 1—A typical ordering description is as follows: 100 000 lb Wire Rods, 7/32 in., Grade 1010 in approximately 1000 lb Coils to 50 000 kg steel wire rods, 5.5 mm, Grade G10100 in approximately 600 kg for metric orders to ASTM A510 dated ______.
 - 4.2 Orders for coarse round wire under this specification should include the following information:
 - 4.2.1Quantity (pounds or pieces),
 - 4.2.2Name of material (uncoated carbon steel wire),
 - 4.2.1 Quantity (lbs or pieces [kg or pieces]),
 - 4.2.2 Name of material (uncoated carbon steel wire or alloy steel wire),
 - 4.2.3 Diameter (see 3.1.23.1.1),
 - 4.2.4 Length (straightened and cut only),
 - 4.2.5Chemical composition (Tables 3-6
 - 4.2.5 Chemical composition (Guide A1040),

TABLE 1 Steel Wire Gauge^A(English Units)

Gauge No.	Decimal Equivalent, in.	Gauge No.	Decimal Equivalent, in.
7/0	0.490	9	0.148*
6/0	0.462*	91/2	0.142
5/0	0.430*	10	0.135
4/0	0.394*	101/2	0.128
3/0	0.362*	11	0.120*
2/0	0.331	111/2	0.113
1/0	0.306	12	0.106*
1	0.283	121/2	0.099
11/2	0.272	13	0.092*
2	0.262*	131/2	0.086
21/2	0.253	14	0.080
3	0.244*	141/2	0.076
31/2	0.234	15	0.072
4	0.225*	15½	0.067
41/2	0.216	16	0.062*
5	0.207	16½	0.058
51/2	0.200	17	0.054
6	0.192	171/2	0.051
61/2	0.184	18	0.048*
7	0.177	181/2	0.044
71/2	0.170	19	0.041
8	0.162	19½	0.038
81/2	0.155	20	0.035*

^A The steel wire gauge outlined in this table has been taken from the original Washburn and Moen Gauge chart. In 20 gauge and coarser, sizes originally quoted to 4 decimal equivalent places have been rounded to 3 decimal places in accordance with rounding procedures of Practice E29. All rounded U.S. customary values are indicated by an asterisk.

TABLE 1 (M) Steel Wire Gauge ^A (SI Units, mm)					
$\begin{array}{c c} \hline \textbf{nttps} & \underline{0.90} & \textbf{stantial dis} & \underline{6.0} & \textbf{ch.sat} \\ \hline \textbf{1.00} & \underline{1.10} & \textbf{ment Pre} & \underline{7.5} \\ \hline \textbf{1.20} & \textbf{ment Pre} & \underline{7.5} \\ \hline \end{array}$					
1.30 1.40 1.60 1.80 STM A510/A510M-11 9.5					
https://standards.iteh.ai/catalog/standards $\frac{2.0}{2.1}$ t/4f630cc9-fe6c-47af-a $7\frac{10.0}{11.0}$ -55c78538d8a3/astm-a510-a510m- $\frac{12.0}{13.0}$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{ccc} \hline 3.2 & $					
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00					

- 4.2.6 Packaging,
- 4.2.7 ASTM designation and date of issue, and
- 4.2.8 Special requirements, if any.

Note3—A typical ordering description is as follows: 40000 lb Uncoated Carbon Steel Wire, 0.148 in. (9 ga.) diameter, Grade 1008 in 500 lb Coils on Tubular Carriers to ASTM A 510-XX, or

2500 Pieces, Carbon Steel Wire, 0.375 in. diameter, Straightened and Cut 29½ in., Grade 1015, in 25 Piece Bundles on Pallets to ASTM A 510-XX.

2—A typical ordering description is as follows: 40 000 lb Uncoated Carbon or Alloy Steel Wire, 0.148 in. (9 ga.) diameter, Grade 1008 in 500 lb Coils on Tubular Carriers to ASTM A150/A510M-XX, or

2500 Pieces, Carbon or Alloy Steel Wire, 0.375 in. diameter, Straightened and Cut 29½ in., Grade 1015, in 25 Piece Bundles on Pallets to ASTM A150/A510M-XX.

For metric, a typical ordering description is as follows: 15 000 kg uncoated carbon or alloy steel wire 3.8 mm diameter, Grade G10080 in 1000 Kg

TABLE 2 Sizes of Wire Rods^A(English Units)

Inch Fraction	Decimal Equivalent, in.	Inch Fraction	Decimal Equivalent, in.
7/32	0.219	31/64	0.484
15/64	0.234	1/2	0.500
1/4	0.250	33/64	0.516
17/64	0.266	17/32	0.531
9/32	0.281	35/64	0.547
19/64	0.297	9/16	0.562
5/16	0.312	³⁷ / ₆₄	0.578
21/64	0.328	19/32	0.594
11/32	0.344	39/64	0.609
23/64	0.359	5/8	0.625
3/8	0.375	41/64	0.641
25/64	0.391	21/32	0.656
13/32	0.406	43/64	0.672
27/64	0.422	11/16	0.688
7/16	0.438	45/64	0.703
29/64	0.453	23/32	0.719
15/32	0.469	47/64	0.734

^A Rounded off to 3 decimal places in decimal equivalents in accordance with procedures outlined in Practice E29.

TABLE 2 (M) Sizes of Wire Rods (SI Units, mm)

	<u> </u>
5.5 en Standa	12.5
(http: 7.5 / standard	13.5
$\frac{(nttp)\frac{7}{7.5}}{8}$ /Standard	<u>14.5</u> ten.al)
8.5 cument Pro 9.5 10 10.5 11 ASTM A510/A510M talog/standar/12 sist/4f630cc9-fe6c-47a	15.5 16
<u>9.5</u>	16.5
10 10 5	<u>17</u>
11 ASTM A510/A510M	18
talog/standar(11.5) talog/standar(12.5) ist/4f630cc9-fe6c-47a	15.5 16.5 17.5 18.5 19. 2-55c78538d8a3/astm-a510

coils on tubular carriers to ASTM A150/A510M-XX, or 2500 pieces carbon or alloy steel wire, 9.5 mm diameter, straightened and cut, 0.76 m, Grade G10500, in 25-piece bundles on pallets to ASTM A150/A510M-XX.

5. Manufacture

5.1The 5.1 The steel shall be made by the electric-furnace, basic-oxygen or other similar commercially accepted steel making process. The steel may be either ingot cast or strand cast.

6. Chemical Composition

- 6.1 The chemical composition for steel under this specification shall conform to the requirements set forth in the purchase order. 6.1.Hf material is ordered to chemical composition, the Chemical compositions are specified by ranges or limits for carbon and other elements. The grades commonly specified for carbon and alloy steel wire rods and coarse round wire are showndesignated in Tables 3-6Guide A1040.
- 6.1.2For 6.1.1 For wire rods intended for direct-drawn wire, it is common practice to specify a range of tensile strength. If chemistry ranges are also specified, due consideration should be taken to ensure that the producer can achieve the required strengths within the allowable carbon range. The limits for Mn, P, and S limits for carbon steel wire rods are normally specified according to Table 3Guide A1040.
- 6.2 <u>Boron Additions to Control Strain Ageing Behavior</u>—Intentional additions of boron to low carbon steels for the purpose of controlling strain ageing behavior during wire drawing is permissible only with the agreement of the purchaser. In such cases, the boron content shall be reported in either a material test report or certification.
- 6.2.1 For steels that do not have intentional boron additions for hardenability or for control of strain ageing behavior, the boron content will not normally exceed 0.0008 %.
 - 6.3 Cast or Heat Analysis (Formerly Ladle Analysis)—An analysis of each cast or heat shall be made by the producer to