INTERNATIONAL STANDARD

Third edition 2023-08

Calculation of load capacity of bevel gears —

Part 3: Calculation of tooth root strength

Calcul de la capacité de charge des engrenages coniques — Ten STA Partie 3: Calcul de la résistance du pied de dent

(standards.iteh.ai)

<u>ISO 10300-3:2023</u> https://standards.iteh.ai/catalog/standards/sist/00384d4b-2ecc-42cc-af6b-419db4243fc4/iso-10300-3-2023

Reference number ISO 10300-3:2023(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 10300-3:2023

https://standards.iteh.ai/catalog/standards/sist/00384d4b-2ecc-42cc-af6b-419db4243fc4/iso-10300-3-2023

COPYRIGHT PROTECTED DOCUMENT

© ISO 2023

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: <u>www.iso.org</u>

Published in Switzerland

Page

Contents

Forew	ord		iv	
Introd	luctio	n	v	
1	Scope	9	1	
2	-	native references		
		s and definitions		
3				
4	Symb	ools, general subscripts and abbreviated terms	2	
5	Gene	ral rating procedure	6	
6	Gear tooth rating formulae — Method B1			
	6.1	Tooth root stress formula	7	
	6.2	Permissible tooth root stress	8	
	6.3	Calculated safety factor	9	
	6.4	Tooth root stress factors	9	
		6.4.1 Tooth form factor, <i>Y</i> _{Fa}	9	
		6.4.2 Stress correction factor for load at tooth tip, Y_{Sa}	14	
		6.4.3 Contact ratio factor, <i>Y</i> _e	14	
		6.4.4 Bevel spiral angle factor, Y _{BS}		
		6.4.5 Load sharing factor, Y _{LS}	16	
	6.5	Permissible tooth root stress factors	16	
		6.5.1 Relative surface condition factor, <i>Y</i> _{R,relT-B1}		
		6.5.2 Relative notch sensitivity factor, $Y_{\delta, relT-B1}$		
-	Carr			
7		tooth rating formulae — Method B2	19	
	7.1	Tooth root stress formula		
	7.2	Permissible tooth root stress		
	7.3	Calculated safety factor	20	
	7.4			
		7.4.1 General 10300-3-2023		
		7.4.2 Stress parabola according to Lewis	21	
		 7.4.3 Basic formula of geometry factor, Y_J	21	
		7.4.4 Geometry factor, Y_{I} , for bevel gears (for hypoid gears, see <u>7.4.5</u>)	22	
		7.4.5 Geometry factor, Y _L for hypoid gears	26	
		7.4.6 Additional tooth strength parameters (for bevel and hypoid gears)		
		7.4.7 Root stress adjustment factor, Y_A	38	
	7.5	Permissible tooth root stress factors	38	
		7.5.1 Relative surface condition factor, <i>Y</i> _{R,relT-B2}	38	
		7.5.2 Relative notch sensitivity factor, $Y_{\delta, relT-B2}$	38	
8	Facto	ors for permissible tooth root stress common for method B1 and method B2		
0	8.1			
	0.1	Size factor, <i>Y</i> _X	37	
			39	
		8.1.2 Structural and through hardened steels, spheroidal cast iron, perlitic	20	
		malleable cast iron.		
		8.1.3 Case, flame, induction hardened steels, nitrided or nitro carburized steels		
	0.2	8.1.4 Grey cast iron and spheroidal cast iron (ferrit structure)		
	8.2	Life factor, <i>Y</i> _{NT}	39	
		8.2.1 General		
		8.2.2 Method A		
		8.2.3 Method B	40	
Biblio	graph	y	43	

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at <u>www.iso.org/patents</u>. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 60, *Gears*, Subcommittee SC 2, *Gear capacity calculation*.

This third edition cancels and replaces the second edition (ISO 10300-3:2014), which has been technically revised.

The main changes are as follows:

- <u>Table 1</u> has been inserted;
- <u>Table 2</u> has been inserted;
- Figure 4 surface condition factor, Y_{R,relT}, for permissible stress number relative to standard test gear dimensions has been removed;
- Figure 5 relative notch sensitivity factor with respect to standard test gear dimensions has been removed;
- new <u>Figure 5</u> life factor, $Y_{\rm NT}$ (standard reference test gears) has been added;
- Figure 7 size factor, Y_{X} , for permissible tooth root stress has been removed.

A list of all parts in the ISO 10300 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

Introduction

When ISO 10300:2001 (all parts) became due for its first revision, the opportunity was taken to include hypoid gears, since previously the series only allowed for calculating the load capacity of bevel gears without offset axes. The former structure is retained, i.e. three parts of the ISO 10300 series, together with ISO 6336-5, and it is intended to establish general principles and procedures for rating of bevel gears. Moreover, ISO 10300 (all parts) is designed to facilitate the application of future knowledge and developments, as well as the exchange of information gained from experience.

In view of the decision for ISO 10300 (all parts) to cover hypoid gears also, it was agreed to include a separate clause: "Gear tooth rating formulae — Method B2" in this document, while the former methods B and B1 were combined into one method, i.e. method B1. So, it became necessary to present a new, clearer structure of the three parts, which is illustrated in ISO 10300-1:2023, Figure 1.

NOTE ISO 10300 (all parts) gives no preferences in terms of when to use method B1 and when to use method B2.

Failure of gear teeth by tooth root breakage can be brought about in many ways; severe instantaneous overloads, excessive macropitting, case crushing and bending fatigue are a few. The strength ratings determined by the formulae in this document are based on cantilever projection theory modified to consider the following:

- compressive stress at the tooth roots caused by the radial component of the tooth load;
- non-uniform moment distribution of the load, resulting from the inclined contact lines on the teeth
 of spiral bevel gears;
- stress concentration at the tooth root fillet;
- load sharing between adjacent contacting teeth;
- lack of smoothness due to a low contact ratio.

- Idek of shidoutiness due to a low contact ratio.

The formulae are used to determine a load rating, which prevents tooth root fracture during the design life of the bevel gear. Nevertheless, if there is insufficient material under the teeth (in the rim), a fracture can occur from the root through the rim of the gear blank or to the bore (a type of failure not covered by this document). Moreover, it is possible that special applications require additional blank material to support the load.

Surface distress (pitting or wear) can limit the strength rating, either due to stress concentration around large sharp cornered pits, or due to wear steps on the tooth surface. Neither of these effects is considered in this document.

In most cases, the maximum tensile stress at the tooth root (arising from bending at the root when the load is applied to the tooth flank) can be used as a determinant criterion for the assessment of the tooth root strength. If the permissible stress number is exceeded, the teeth can break.

When calculating the tooth root stresses of straight bevel gears, this document starts from the assumption that the load is applied at the tooth tip of the virtual cylindrical gear. The load is subsequently converted to the outer point of single tooth contact. The procedure thus corresponds to method C for the tooth root stress of cylindrical gears (see ISO 6336-3^[1]).

For spiral bevel and hypoid gears with a high face contact ratio of $\varepsilon_{v\beta} > 1$ (method B1) or with a modified contact ratio of $\varepsilon_{v\gamma} > 2$ (method B2), the midpoint in the zone of action is regarded as the critical point of load application.

The breakage of a tooth generally means the end of a gear's life. It is often the case that all gear teeth are destroyed as a consequence of the breakage of a single tooth. A safety factor, $S_{\rm F}$, against tooth root breakage higher than the safety factor against damage due to macropitting is, therefore, generally to be preferred (see ISO 10300-1).

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 10300-3:2023</u> ds.iteh.ai/catalog/standards/sist/00384d4b-2ecc-42cc-af6b-419c

10300-3-2023

Calculation of load capacity of bevel gears —

Part 3: Calculation of tooth root strength

1 Scope

This document specifies the fundamental formulae for use in the tooth root stress calculation of straight and helical (skew), Zerol and spiral bevel gears including hypoid gears, with a minimum rim thickness under the root of 3,5 $m_{\rm mn}$. All load influences on tooth root stress are included, insofar as they are the result of load transmitted by the gearing and able to be evaluated quantitatively. Stresses, such as those caused by the shrink fitting of gear rims, which are superposed on stresses due to tooth loading, are intended to be considered in the calculation of the tooth root stress, $\sigma_{\rm FP}$. This document is not applicable in the assessment of tooth flank fracture.

The formulae in this document are based on virtual cylindrical gears and restricted to bevel gears whose virtual cylindrical gears have transverse contact ratios of $\varepsilon_{v\alpha} < 2$. The results are valid within the range of the applied factors as specified in ISO 10300-1. The bending strength formulae are applicable to fractures at the tooth fillet, but not to those on the active flank surfaces, to failures of the gear rim or of the gear blank through the web and hub.

This document does not apply to stress levels above those permitted for 10^3 cycles, as stresses in that range can exceed the elastic limit of the gear tooth.

NOTE This document is not applicable to bevel gears which have an inadequate contact pattern under load.

The user is cautioned that when the formulae are used for large average mean spiral angles $(\beta_{m1} + \beta_{m2})/2 > 45^\circ$, for effective pressure angles $\alpha_e > 30^\circ$ and/or for large facewidths $b > 13 m_{mn}$, the calculated results of this document should be confirmed by experience.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 701, International gear notation — Symbols for geometrical data

ISO 1122-1, Vocabulary of gear terms — Part 1: Definitions related to geometry

ISO 6336-5, Calculation of load capacity of spur and helical gears — Part 5: Strength and quality of materials

ISO 10300-1:2023, Calculation of load capacity of bevel gears — Part 1: Introduction and general influence factors

ISO 10300-2:2023, Calculation of load capacity of bevel gears — Part 2: Calculation of surface durability (macropitting)

ISO 17485, Bevel gears — ISO system of accuracy

ISO 23509:2016, Bevel and hypoid gear geometry

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 1122-1, ISO 23509 and the following apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at <u>https://www.iso.org/obp</u>
- IEC Electropedia: available at <u>https://www.electropedia.org/</u>

3.1

tooth root breakage

failure of gear teeth at the tooth root by static or dynamic overload

3.2

nominal tooth root stress

 $\sigma_{
m F0}$

bending stress in the critical section of the tooth root calculated for the critical point of load application for error-free gears loaded by a constant nominal torque

3.3

tooth root stress

 $\sigma_{
m F}$

determinant bending stress in the critical section of the tooth root calculated for the critical point of load application including the load factors which consider static and dynamic loads and load distribution

3.4

nominal stress number

 $\sigma_{\rm F,lim}$

maximum tooth root stress of standardized test gears and determined at standardized operating conditions as specified in ISO 6336-5

https://standards.iteh.ai/catalog/standards/sist/00384d4b-2ecc-42cc-af6b-419db4243fc4/iso-

3.5

allowable stress number (bending)

$\sigma_{ m FE}$

maximum bending stress of the un-notched test piece under the assumption that the material is fully elastic

3.6

permissible tooth root stress

 $\sigma_{
m FP}$

maximum tooth root stress of the evaluated gear set including all influence factors

4 Symbols, general subscripts and abbreviated terms

For the purposes of this document, the symbols given in ISO 701, ISO 17485, ISO 23509, and the following shall apply.

Symbol	Description or term	Unit
a _{BS}	Auxiliary value	—
b	Facewidth	mm
b _a	Developed length of one tooth as facewidth of the calculation model	mm
b _{BS}	Auxiliary value	—
b _{ce}	Calculated effective facewidth	mm
b _k	Mean facewidth	mm

Table 1 — Symbols

Symbol	Description or term	Unit
$b_{\rm v}$	Facewidth of virtual cylindrical gears	mm
b _{v,rel}	Relative facewidth of virtual cylindrical gear pair	
C _{mm}	Conversion factor used in Formula (202), $C_{mm} = 25,4 \text{ mm}$	mm
$c_{\rm BS}$	Auxiliary value	
d _{van}	Tip diameter of virtual cylindrical gear in normal section	mm
$d_{\rm vbn}$	Base diameter of virtual cylindrical gear in normal section	mm
E, G, H	Auxiliary quantities for tooth form factor (method B1)	—
F _{mt}	Nominal tangential force at mid-facewidth of the reference cone	Ν
F _{vmt}	Nominal tangential force of virtual cylindrical gears	N
g_{J}	Relative length of action to point of load application (method B2)	—
$g_{\rm f0}$	Auxiliary term	mm
$g_{ m rb}$	Relative distance from blade edge to centre line	_
$g_{\rm van}$	Relative length of action in normal section	_
$g_{\rm van,hyp}$	Relative length of action in normal section for hypoid gears	_
g_{xb}	Auxiliary term	_
$g_{\rm yb}$	Auxiliary term	_
g_{za}	Auxiliary term	_
$g_{\rm zb}$	Auxiliary term STANDAKD FKLVILW	_
g_η	Relative length of action within the contact ellipse	_
g_0	Auxiliary term (Stalled al US-Iteli-al)	_
g_1	Intermediate value	mm
h _{a0}	Tool addendum <u>ISO 10300-3:2023</u>	mm
$h_{\rm Fa}^{\rm sta}$	Bending moment arm for tooth root stress (load application at tooth tip) ^{/db42431}	4/180mm
h _{fm}	Mean dedendum	mm
h _m	Mean whole depth used for bevel spiral angle factor	mm
h _N	Relative load height from critical section (method B2)	_
h _{vfm}	Relative mean virtual dedendum	
h _{1,2,3,4}	Auxiliary values	
K _A	Application factor	_
K _{Fα}	Transverse load factor for bending stress	_
K _{Fβ}	Face load factor for bending stress	
K _v	Dynamic factor	_
k'	Contact shift factor	_
L	Factor to calculate the stress correction factor according to Dolan and Broghamer	_
L _{a,D,C}	Auxiliary value	
l _{bb}	Part of the model's facewidth covered by the contact line	mm
l _{bm}	Theoretical length of middle contact line	mm
M	Factor to calculate the stress correction factor according to Dolan and Broghamer	_
m _{et}	Outer transverse module	mm
m _{mn}	Mean normal module	mm
m _{mt}	Mean transverse module	mm
N _L	Number of load cycles	_
0	Factor to calculate the stress correction factor according to Dolan and Broghamer	_
q _s	Notch parameter	

 Table 1 (continued)

Symbol	Description or term	Unit
R _{CL2}	Relative radius from tool centre to critical pinion coast side fillet point	
R _{DL2}	Relative radius from tool centre to critical pinion drive side fillet point	_
R _m	Mean cone distance	mm
Rz	Mean roughness	μm
r _{L10}	Relative pinion radius to fillet point	_
r _{L20}	Relative wheel radius to pinion fillet point	_
r _{mf}	Relative tooth fillet radius at the root in mean section	
r _{mpt}	Mean pitch radius	mm
r _{my0}	Mean transverse radius to point of load application (method B2)	mm
r _{va}	Relative mean virtual tip radius	
r _{vn}	Relative mean virtual pitch radius	
Δr_{y0}	Relative distance from pitch circle to the pinion point of load application and the wheel tooth centre line	
S _F	Safety factor for bending stress (against tooth root breakage)	_
S _{F,min}	Minimum safety factor for bending stress	
s _{Fn}	Tooth root chord in calculation section	mm
s _N	Relative horizontal distance from centreline to critical fillet point (method B2)	_
s _{mn}	Mean normal circular thickness	mm
s _{pr}	Amount of protuberance	mm
<i>s</i> _{vmn}	Relative virtual tooth thickness and a massive main and a massive massi	
W _{m2}	Wheel mean slot width	mm
x _{hm}	Profile shift coefficient ISO 10300-3:2023	_
x _{sm} htt	Thickness modification coefficient dards/sist/00384d4b-2ecc-42cc-af6b-419dl	04243f c4 /iso
x _N	Tooth strength factor (method B2) 10300-3-2023	
<i>X</i> ₀₀	Distance from mean section to point of load application	mm
<i>x</i> ₁	Relative horizontal distance from pitch circle to fillet point	
Y _A	Root stress adjustment factor (method B2)	_
Y _{BS}	Bevel spiral angle factor	
Y _{Fa}	Tooth form factor for load application at the tooth tip (method B1)	
Y _{FS}	Combined tooth form factor for generated gears	
Y _f	Stress concentration and stress correction factor (method B2)	
Y	Bending strength geometry factor (method B2)	
Y _{LS}	Load sharing factor (bending)	
Y _{NT}	Life factor (bending)	
Y _P	Combined geometry factor (method B2)	
Y _R	Surface condition at the root fillet	_
Y _{RT}	Surface condition at the test gear	
Y _{R,relT}	Relative surface condition factor	
Y _{Sa}	Stress correction factor for load application at the tooth tip	
Y _{ST}	Stress correction factor for dimensions of the standard test gear	
Y _X	Size factor for tooth root stress	
Y _{1,2}	Tooth form factor of pinion and wheel (method B2)	
$Y_{\delta, relT}$	Relative notch sensitivity factor	
Y_{ε}	Contact ratio factor for bending (method B1)	

Table 1 (continued)

Symbol	Description or term	Unit
<i>y</i> _J	Relative location of point of load application for maximum bending stress on path of action (method B2)	
<i>Y</i> ₁	<i>y</i> ₁ Relative vertical distance from pitch circle to fillet point	
<i>y</i> ₃ Relative distance from the beginning of the path of action to the point of load application on path of action for maximum root stress		_
$Z_{\rm LS}$	Load sharing factor (method B1)	—
z _{vn}	Number of teeth of virtual cylindrical gear in normal section	—
$\alpha_{\rm Cnf}$	Coast flank pressure angle in wheel root coordinates	0
$\alpha_{\rm Dnf}$	Drive flank pressure angle in wheel root coordinates	0
$\alpha_{\rm Fan}$	Load application angle at tooth tip of virtual cylindrical gear (method B1)	0
$\alpha_{ m L}$	Normal pressure angle at point of load application (method B2)	0
$\alpha_{\rm LN}$	Generated pressure angle at fillet point	0
α _a	Adjusted pressure angle (method B2)	0
α _{an}	Normal pressure angle at tooth tip	0
$\alpha_{\rm eD,C}$	Effective pressure angle for drive side/coast side	0
$\alpha_{\rm f}$	Limit pressure angle in wheel root coordinates (method B2)	0
$\alpha_{\rm h}$	Auxiliary term	0
$\alpha_{\rm lim}$	Limit pressure angle	0
$\alpha_{\rm nD,C}$	Generated pressure angle for drive side/coast side	0
β_a	Intermediate angle stand a moleculate h and	0
$\beta_{\rm v}$	Helix angle of virtual gear (method B1), virtual spiral angle (method B2)	0
$\beta_{\rm vb}$	Helix angle at base circle of virtual cylindrical gear	0
$ttn \chi_a//sta$	Auxiliary angle for tooth form and tooth correction factor	·1/iso- °
ε _N	Load sharing ratio for bending (method B2)	
ε _b	Lengthwise load sharing factor	_
ε _f	Profile load sharing factor	_
ενα	Transverse contact ratio of virtual cylindrical gears	_
ε _{ναn}	Transverse contact ratio of virtual cylindrical gears in normal section	_
ε _{vαn,hyp}	Transverse contact ratio of virtual cylindrical gears in normal section for hypoid gears	
$\varepsilon_{v\beta}$	Face contact ratio of virtual cylindrical gears	_
ε _{νγ}	Virtual contact ratio (method B1), modified contact ratio (method B2)	_
θ	Auxiliary angle for tooth form and tooth correction factors	rad
θ_{D1}	Wheel angle from centreline to pinion tip on drive side	rad
Δθ	Wheel angle between fillet points	0
θ	Auxiliary value	_
μ	Relative distance from centreline to tool critical fillet point	
ξ	Assumed angle in locating weakest section	rad
$\xi_{ m h}$	One half of angle subtended by normal circular tooth thickness at point of load application	rad
$ ho_{a0}$	Cutter edge radius	mm
$\rho_{\rm F}$	Fillet radius at point of contact of 30° tangent	mm
$\sigma_{\rm B}$	Tensile strength (corresponds to <i>R</i> _m of ISO 6892-1)	N/mm ²
$\sigma_{\rm FE}$	Allowable stress number (bending)	N/mm ²
$\sigma_{\rm FP}$	Permissible tooth root stress	N/mm ²

 Table 1 (continued)

Symbol	Description or term	Unit
$\sigma_{ m F,lim}$	Nominal stress number (bending)	N/mm ²
$ ho_{ m Fn}$	Fillet radius at point of contact of 30° tangent in normal section	mm
$ ho_{ m fP}$	Root fillet radius of basic rack for cylindrical gears	mm
$\sigma_{ m S}$	Yield stress (corresponds to R _p of ISO 6892-1)	N/mm ²
$\sigma_{0,2}$	Proof stress (0,2 % permanent set) (corresponds to $R_{p0,2}$ of ISO 6892-1)	N/mm ²
$ ho_{\Delta red}$	Radius of curvature change	_
$\chi^{\rm X}$	Relative stress drop in notch root	mm ⁻¹
$\chi^{\rm X}_{ m T}$	Relative stress drop in notch root of standardized test gear	mm ⁻¹

Table 1 (continued)

Table 2 — General subscripts

Subscripts	Description
0	Tool
1	Pinion
2	Wheel
A, B, B1, B2, C	Value according to method A, B, B1, B2 or C
D	Drive flank
С	Coast flank on STANDARD PRRVIRW
Т	Relative to standardized test gear dimensions
(1), (2)	Trials of interpolation Standards iten.ai)

Table 3 — Abbreviated terms in accordance with ISO 6336-5

Abbreviated term	ds.iteh.ai/catal Materialards/sist/00384	14b-2ecc-42cc-afo Type 9db4243fc4/iso-
St	10300-3-202	Wrought normalized low carbon steels
St (cast.)	Normalized low carbon steels/cast steels	Cast steels
GTS (perl.)		Black malleable cast iron (perlitic structure)
GGG (perl., bai., ferr.)	Cast iron materials	Nodular cast iron (perlitic, bainitic, ferritic structure)
GG		Grey cast iron
V	Through hardened wrought steels	Carbon steels, alloy steels
V (cast)	Through hardened cast steels	Carbon steels, alloy steels
Eh	Case-hardened wrought steels	
IF	Flame or induction hardened wrought or cast steels	
NT (nitr.)	Nitrided wrought steels/nitriding steels/	Nitriding steels
NV (nitr.)	through hardening steels, nitrided	Through hardening steels
NV (nitrocar.)	Wrought steels, nitrocarburized	Through hardening steels

5 General rating procedure

There are two main methods for determining tooth bending strength of bevel and hypoid gears: method B1 and method B2. They are provided in <u>Clauses 6</u> and <u>7</u>, while <u>Clause 8</u> contains those influence

factors which are equal for both methods. Method B1 contains one set of formulae for both, bevel and hypoid gears. Method B2 has different sets of formulae for bevel gears and for hypoid gears (see <u>7.4.3</u> for general aspects).

With both methods, the capability of a gear tooth to resist tooth root stresses shall be determined by the comparison of the following stress values:

- tooth root stress $\sigma_{\rm F}$, based on the geometry of the tooth, the accuracy of its manufacture, the rigidity of the gear blanks, bearings and housing, and the operating torque, expressed by the tooth root stress formula (see <u>6.1</u> and <u>7.1</u>);
- permissible tooth root stress σ_{FP} , based on the bending stress number, $\sigma_{\text{F,lim}}$, of a standard test gear and the effect of the operating conditions under which the gears operate, expressed by the permissible tooth root stress formula (see <u>6.2</u> and <u>7.2</u>).

NOTE In respect of the permissible tooth root stress, reference is made to a stress "number", a designation adopted because pure stress, as determined by laboratory testing, is not calculated by the formulae in this document. Instead, an arbitrary value is calculated and used in this document, with accompanying changes to the allowable stress number in order to maintain consistency for design comparison.

The ratio of the permissible root stress and the calculated root stress is the safety factor S_F . The value of the minimum safety factor for tooth root stress, $S_{F,\min}$, should be $\geq 1,3$ for spiral bevel gears. For straight bevel gears, or where $\beta_m \leq 5^\circ$, $S_{F,\min}$ should be $\geq 1,5$.

The gear designer and customer should agree on the value of the minimum safety factor.

Tooth root breakage usually ends transmission service life. The destruction of all gears in a transmission can be a consequence of the breakage of one tooth, then, the drive train between input and output shafts is interrupted. Therefore, the chosen value of the safety factor, $S_{\rm F}$, against tooth root breakage should be carefully chosen to fulfil the application requirements (see ISO 10300-1 for general comments on the choice of safety factor).

<u>ISO 10300-3:2023</u>

6 Gear tooth rating formulae — Method B1

6.1 Tooth root stress formula

The calculation of the tooth root stress is based on the maximum bending stress at the tooth root. It is determined separately for pinion (suffix 1) and wheel (suffix 2) in accordance with <u>Formula (1)</u>; in the case of hypoid gears, additionally for drive flank (suffix D) and coast flank (suffix C):

$$\sigma_{\text{F-B1}} = \sigma_{\text{F0-B1}} \cdot K_{\text{A}} \cdot K_{\text{v}} \cdot K_{\text{F}\beta} \cdot K_{\text{F}\alpha} < \sigma_{\text{FP-B1}} \tag{1}$$

with the load factors K_A , K_v , $K_{F\beta}$, $K_{F\alpha}$, which shall be as specified in ISO 10300-1.

The nominal tooth root stress is defined as the maximum bending stress at the tooth root (30° tangent to the root fillet):

$$\sigma_{\rm F0-B1} = \frac{F_{\rm vmt}}{b_{\rm v} \cdot m_{\rm mn}} \cdot Y_{\rm Fa} \cdot Y_{\rm Sa} \cdot Y_{\varepsilon} \cdot Y_{\rm BS} \cdot Y_{\rm LS}$$
(2)

where

- $F_{\rm vmt}$ is the nominal tangential force of the virtual cylindrical gear in accordance with ISO 10300-1:2023, Formula (2);
- b_v is the facewidth of the virtual cylindrical gear calculated for the active flank, drive or coast side, as specified in ISO 10300-1:2023, Annex A;

- Y_{Fa} is the tooth form factor (see <u>6.4.1</u>) which accounts for the influence of the tooth form on the nominal bending stress at the tooth root for load application at the tooth tip;
- Y_{Sa} is the stress correction factor (see <u>6.4.2</u>) which accounts for the stress increasing notch effect in the root fillet, as well as for the radial component of the tooth load and the fact that the stress condition in the critical root section is complex, but not for the influence of the bending moment arm;
- Y_{ε} is the contact ratio factor (see <u>6.4.3</u>) which accounts for the conversion of the root stress determined for the load application at the tooth tip to the determinant position;
- $Y_{\rm BS}$ is the bevel spiral angle factor, which accounts for smaller values for $l_{\rm bm}$ compared to the total facewidth, $b_{\rm v}$, and the inclined lines of contact (see <u>6.4.4</u>);
- $Y_{\rm LS}$ is the load sharing factor, which accounts for load distribution between two or more pairs of teeth (see <u>6.4.5</u>).

The determinant position of load application is:

- a) the outer point of single tooth contact, if $\varepsilon_{v\beta} = 0$;
- b) the midpoint of the zone of action, if $\varepsilon_{v\beta} \ge 1$;
- c) interpolation between a) and b), if $0 < \varepsilon_{v\beta} < 1$.

6.2 Permissible tooth root stress ANDARD PREVIEW

The permissible tooth root stress, $\sigma_{\rm FP}$, shall be calculated separately for pinion and wheel. The values should preferably be evaluated on the basis of the strength of a standard test gear instead of a prismatic specimen, which deviates too much with respect to similarity in geometry, course of movement and manufacture.

$$\sigma_{\text{FP-B1}} = \sigma_{\text{FE}} \cdot Y_{\text{NT}} \cdot Y_{\delta,\text{relT-B1}} \cdot Y_{\text{R,relT-B1}} \cdot Y_{\text{X}} \frac{\text{dards/sist/00384d4b-2ecc-42cc-af6b-419db4243fc4/ist}{10300-3-2023} (3)$$

$$\sigma_{\text{FP-B1}} = \sigma_{\text{F,lim}} \cdot Y_{\text{ST}} \cdot Y_{\text{NT}} \cdot Y_{\delta,\text{relT-B1}} \cdot Y_{\text{R,relT-B1}} \cdot Y_{\text{X}}$$
(4)

where

$\sigma_{ m FE}$	is the allowable stress number (tooth root);
$\sigma_{ m FE}$	$= \sigma_{F,\lim 1,2} \cdot Y_{ST}$ is the basic bending strength of the un-notched specimen under the assumption that the material (including heat treatment) is fully elastic;
$\sigma_{\mathrm{F,lim}}$	is the nominal stress number (bending) of the test gear, which accounts for material, heat treatment and surface influence at test gear dimensions as specified in ISO 6336-5;
$Y_{\rm ST}$	is the stress correction factor for the dimensions of the standard test gear, $Y_{\rm ST}$ = 2,0;
Y _{δ,relT-B1}	is the relative notch sensitivity factor for the permissible stress number, related to the conditions at the standard test gear (see <u>6.5.2</u>), $Y_{\delta,\text{relT}} = Y_{\delta}/Y_{\delta T}$ accounts for the notch sensitivity of the material;
Y _{R,relT-B1}	is the relative surface condition factor (see <u>6.5.1</u>), $Y_{R,relT} = Y_R/Y_{RT}$ accounts for the surface condition at the root fillet, related to the conditions at the test gear;

 Y_X is the size factor for tooth root strength, which accounts for the influence of the module on the tooth root strength (see <u>8.1</u>);

 $Y_{\rm NT}$ is the life factor, which accounts for the influence of required numbers of cycles of operation (see 8.2).

6.3 Calculated safety factor

The evaluated tooth root stress, $\sigma_{\rm F}$, shall be $\leq \sigma_{\rm FP}$, which is the permissible tooth root stress. The calculated safety factor against tooth root breakage shall be determined separately for pinion and wheel:

$$S_{\text{F-B1}} = \frac{\sigma_{\text{FP-B1}}}{\sigma_{\text{F-B1}}} > S_{\text{F,min}} \tag{5}$$

NOTE This is the calculated safety factor with respect to the transmitted torque.

Considerations in reference to the safety factors and the risk (probability) of failure are given in ISO 10300-1:2023, 5.2.

6.4 Tooth root stress factors

6.4.1 Tooth form factor, Y_{Fa}

6.4.1.1 General

The tooth form factor, Y_{Fa} , accounts for the influence of the tooth form on the nominal tooth root stress in the case of load application at the tooth tip. It is determined separately for pinion and wheel. In doing so, the possibility to manufacture bevel and hypoid gears with different pressure angles at drive and coast side shall be considered (see Figure 1).

In the case of gears with tip and root relief, the actual bending moment arm is slightly smaller, but this should be neglected, and the calculation is on the safe side.

Bevel gears without offset generally have octoid teeth and tip and root relief. However, deviations from an involute profile are small, especially in view of the tooth root chord and bending moment arm, and thus both, tip and root relief, are neglected when calculating the tooth form factor.

The distance between the contact points of the 30° tangents at the root fillets of the tooth profile of the virtual cylindrical gear is taken as the critical section for calculation (see Figure 1).

By method B1 of ISO 10300, the tooth form factor, Y_{Fa} , and stress correction factor, Y_{Sa} , are determined for the nominal gear without deviations.