INTERNATIONAL STANDARD

First edition 2022-07

Determination of modulation period of nano-multilayer coatings by lowangle X-ray methods

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 24688:2022</u> https://standards.iteh.ai/catalog/standards/sist/6c7dfa70-7a35-4273-bffe-8748e5f4e9f6/iso-24688-2022

Reference number ISO 24688:2022(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 24688:2022

https://standards.iteh.ai/catalog/standards/sist/6c7dfa70-7a35-4273-bffe-8748e5f4e9f6/iso-24688-2022

COPYRIGHT PROTECTED DOCUMENT

© ISO 2022

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Page

Contents

Forewordiv			
2	_	mative references	
3	Tern	ns and definitions	
4	Subs	strate conditions	
5	Testing of modulation period		
	5.1	Principle for low-angle X-ray methods	
		5.1.1 General	
		5.1.2 XRR method	
		5.1.3 GIXRD method	
		5.1.4 Calculating formula	
	5.2	Specifications concerning the coated sample	
		5.2.1 Size specifications for the coated sample	
		5.2.2 Periods specifications for the coated sample	
		5.2.3 Surface roughness requirements of the coated sample	
	5.3	Specifications for X-ray measuring apparatus	5
		 5.3.1 Apparatus configuration 5.3.2 Beam conversion device 	5
		5.3.2 Beam conversion device	5
		5.3.3 Radiation sources and filters	
	5.4	Calibrating of apparatus	5
	5.5	Testing conditions	
	5.6	Calibrating of apparatus Testing conditions Test and calculation procedure	6
Anne	x A (in	nformative) Process of determination of modulation period by XRR	7

24688-2022

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see <u>www.iso.org/</u> iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 107, *Metallic and other inorganic coatings*, Subcommittee SC 9, *Physical vapor deposition coatings*.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

Introduction

Nano-multilayer coatings by physical vapor deposition (PVD), which possess high coating-substrate adhesion, high hardness and good wear resistance, corrosion resistance and conductive resistance, have been widely applied on tools, moulds, microelectronics and other important parts to improve their service life. Nano-multilayers formed by depositing two materials alternately at nanometer scale have attracted considerable interest due to their superior physical and chemical properties. The modulation period refers to the thickness of these two alternate layers.

Based on the chemical compositions, the main nano-multilayer coatings involve metal/metal, metal/ ceramic and ceramic/ceramic systems such as Cu/Ni, Cu/W, Cu/Ag, Ti/TiN, Cr/CrN, Zr/ZrN, TiN/CrN, CrN/AlCrN, TiC/TiCN and CrAlN/AlCrTiSiN. The key factor influencing the properties of nano-multilayer coatings was previously the modulation period, which has an important effect on properties including hardness, toughness, electromagnetic and optical property. For example, as the modulation period decreases, the hardness of the nano-multilayer coatings increases. At present, the high-resolution projection electron microscope (HR-TEM) and the X-ray methods including the X-ray reflectivity (XRR) and glancing incident X-ray diffraction (GIXRD) are the two common methods for determining the modulation period of the nano-multilayer coatings. X-ray methods are more suitable for determining the and the modulation period due to the advantages of being non-destructive, statistical, convenient and accurate compared with HR-TEM.

However, there is not yet any standard to qualify the modulation period of these nano-multilayer coatings, which limits their further development.

Thus, the motivation of this document is to prescribe the calculation of the modulation period of the nano-multilayer hard coatings and the measurement conditions of X-ray methods. The modulation period is an important technical indicator of the nano-multilayer coatings, which can also provide the communication bridge for customers who want to use the coatings, tool coater and analytic service provider. This document can be used for quality assurance of products with nano-multilayer coatings.

nttps://standards.iteh.ai/catalog/standards/sist/6c7dfa70-7a35-4273-bffe-8748e5f4e9f6/iso-24688-2022

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 24688:2022

https://standards.iteh.ai/catalog/standards/sist/6c7dfa70-7a35-4273-bffe-8748e5f4e9f6/iso-24688-2022

Determination of modulation period of nano-multilayer coatings by low-angle X-ray methods

1 Scope

This document specifies the substrate conditions and testing of the modulation period (including the principles for low-angle X-ray methods, the requirements of the coatings, the requirements for X-ray measuring apparatus, the calibration of apparatus and samples, and the testing conditions and calculation process) of nano-multilayer coatings by low-angle X-ray methods including X-ray reflectivity (XRR) and glancing incident X-ray diffraction (GIXRD).

2 Normative references

There are no normative references in this document.

3 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at <u>https://www.electropedia.org/</u>

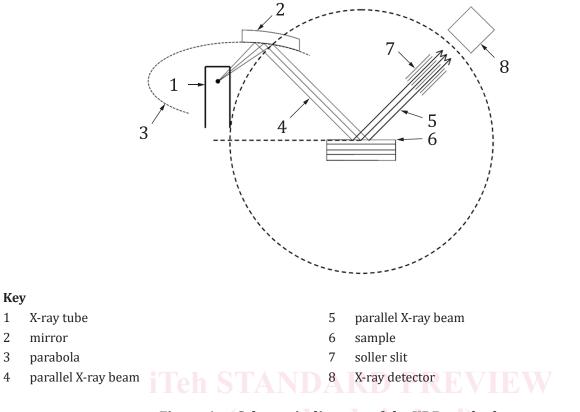
SO 24688:2022

4 Substrate conditions

24688-2022

Considering that the roughness of industrial tools or moulds is normally not the roughness required, it is necessary to supply testing samples with the same substrate and surface condition. The roughness of the substrate of testing samples should be less than 50 nm of peak-to-valley or less than 5 nm RMS (route-mean-square) before the coating process. The substrate of testing samples should be cleaned by using the ultrasonic agitation procedure: immersion in a correct solution to remove hydrocarbons and others surface contaminants.

5 Testing of modulation period


5.1 Principle for low-angle X-ray methods

5.1.1 General

The X-ray methods in this document consist of X-ray reflectivity (XRR) and glancing incident X-ray diffraction (GIXRD).

5.1.2 XRR method

When X-rays are irradiated on to the sample at very low angles, and the angle of irradiation is gradually increased beyond a certain angle called critical angle, X-rays are reflected from the interfaces of the sample and give rise to interference fringes. The periodicity of the fringes is proportional to the thickness of the modulation period. The modulation period can then be calculated by a specific calculation. Figure 1 shows the typical schematic diagram of the XRR method.

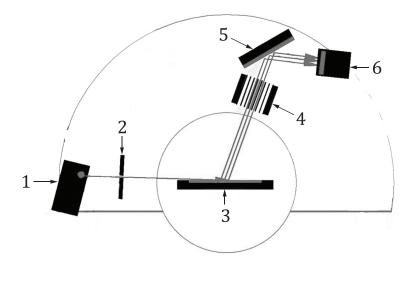


Figure 1 — Schematic diagram of the XRR method

5.1.3 GIXRD method

ISO 24688:2022

GIXRD is a special XRD technology, for which the incident angle α is fixed. For nano-multilayer coating, the periodic modulation interfaces also cause the diffraction phenomenon in the low angle range $(2\theta = 0,3^{\circ} \text{ to } 10^{\circ}, \text{ where } \theta$ is the peak position corresponding to the n^{th} order of the reflection). When X-rays are irradiated onto the sample at a low angle, diffraction fringes appear as the diffraction conditions are met. The modulation period can then be calculated by specific calculation. Figure 2 shows the schematic diagram of the GIXRD method. For the GIXRD method, the incident angle α is fixed.

Key

- 1 X-ray source
- 2 slit
- 3 sample

- 4 soller slit
- 5 LiF-secondary monochromator
- 6 detector

Figure 2 — Schematic diagram GIXRD method

5.1.4 Calculating formula

After obtaining the XRR or GIXRD pattern, the modulation period is calculated by the following modified Braggs-law, Formula (1):

$$\sin^{2}(\theta) = \left(\frac{n\lambda}{2\Lambda}\right)^{2} + 2\delta_{1/catalog/standards/sist/6c7dfa70-7a35-4273-bffe-8748e5f4e9f6/iso-}$$
(1)

where

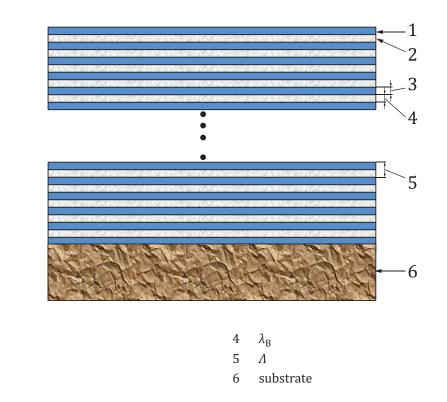
- θ is the peak position corresponding to the *n*th order of the reflection;
- λ is the wavelength of X-ray;
- δ is the deviation of the average refractive index of the film;
- Λ is the modulation period.

The nano-multilayer coatings with modulation structure comprise two kinds of layers, in which every two adjacent layers constitute a unit and the thickness is called the "modulation period" ($\Lambda = \lambda_A + \lambda_B$, where λ_A and λ_B are the thickness of the A layer and B layer, respectively.) Λ is less than 200 nm or than a super-lattice coating, as shown in Figure 3.

Key

1

2


3

5.2

A layer

B layer

 λ_{A}

Figure 3 — Schematic diagram of the periodic structure of multi-layer coatings

Specifications concerning the coated sample

5.2.1 Size specifications for the coated sample 24688:2022

The coated sample should have a flat area of at least 10 mm in diameter for the measuring spot, in order to ensure a sufficient reflecting or diffraction area and volume. Considering that microelectronics generally do not have sufficiently large, flat and homogenous areas measuring 10 mm × 10 mm, an alternative choice of flat testing sample with the same substrate material and surface condition can be applied.

5.2.2 Periods specifications for the coated sample

The periods of the coated sample should be less than 200 nm because the period of 200 nm is beyond the resolution limit of the diffraction instrument.

5.2.3 Surface roughness requirements of the coated sample

Surface roughness, $R_{\rm pk}$, of the nano-multilayer coating has an important effect on the determination of the modulation period.

- a) When the surface roughness, R_{pk} , is more than 0,05 µm, the XRR method is unreasonable due to excessive scattering, and GIXRD technology can be used.
- b) When the surface roughness, R_{pk} , is less than 0,05 μ m, both XRR and GIXRD are used. In comparison to GIXRD, XRR is more accurate for measuring the modulation period of nano-multilayer.