INTERNATIONAL STANDARD

ISO 10675-1

Third edition 2021-12

Non-destructive testing of welds — Acceptance levels for radiographic testing —

Part 1: **Steel, nickel, titanium and their alloys**

iTeh STEssais non destructifs des assemblages soudés — Niveaux d'acceptation pour évaluation par radiographie — Partie 1: Acier, nickel, titane et leurs alliages

ISO 10675-1:2021 https://standards.iteh.ai/catalog/standards/sist/07e82de5-fa36-4128-9367-8721b9370686/iso-10675-1-2021

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 10675-1:2021 https://standards.iteh.ai/catalog/standards/sist/07e82de5-fa36-4128-9367-8721b9370686/iso-10675-1-2021

COPYRIGHT PROTECTED DOCUMENT

© ISO 2021

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Con	ntents	Page
Fore	word	iv
1	Scope	1
2	Normative references	1
3	Terms and definitions	
4	Symbols and abbreviations	
5	Radiographic technique	2
6	General	2
7	Acceptance levels	3
Anne	ex A (informative) Guidance to the limitations of radiographic testing	6
Anne	ex B (informative) Examples for determination of area percentage (%) of imperfections	7
Anne	ex C (informative) Calculation of the sum of acceptable areas	9
Bibli	ography	14

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 10675-1:2021 https://standards.iteh.ai/catalog/standards/sist/07e82de5-fa36-4128-9367-8721b9370686/iso-10675-1-2021

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html. (standards.iteh.ai)

This document was prepared by Technical Committee ISO/TC 44, Welding and allied processes, Subcommittee SC 5, Testing and inspection of welds, in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 121; Welding and allied processes, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

This third edition cancels and replaces the second edition (ISO 10675-1:2016), which has been technically revised.

The main changes compared to the previous edition are as follows:

- new <u>Table 1</u> added with abbreviations;
- old <u>Table 1</u> has been split into <u>Table 2</u> and <u>Table 3</u>;
- in <u>Table 4</u> (former <u>Table 2</u>), acceptance levels for maximum permissible pore sizes of porosity, clustered porosity, linear porosity and for lack of fusion have been added;
- the acceptance levels in <u>Clause 6</u> have been extended (General and tables);
- the captures of <u>Figure B.1</u> to <u>B.9</u> have been revised to conform with ISO 5817:2014;
- Figures C.1 and C.2 and the text have been revised to conform with ISO 5817:2014;
- the document has been editorially revised.

A list of all parts of the ISO 10675 series can be found on the ISO website.

Official interpretations of ISO/TC 44 documents, where they exist, are available from this page: https://committee.iso.org/sites/tc44/home/interpretation.html.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Non-destructive testing of welds — Acceptance levels for radiographic testing —

Part 1:

Steel, nickel, titanium and their alloys

1 Scope

This document specifies acceptance levels for indications from imperfections in butt welds of steel, nickel, titanium and their alloys detected by radiographic testing. If agreed, the acceptance levels can be applied to other types of welds (such as fillet welds, etc.) or materials.

The acceptance levels can be related to welding standards, application standards, specifications or codes. This document assumes that the radiographic testing has been carried out in accordance with ISO 17636-1 for RT-F (F = film) or ISO 17636-2 for RT-S (S = radioscopy) and RT-D (D = digital detectors).

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 5817, Welding — Fusion-welded joints in steel; nickel; titanium and their alloys (beam welding excluded) — Quality levels for imperfections teh ai/catalog/standards/sist/07e82de5-fa36-4128-9367-

ISO 6520-1, Welding and allied processes — Classification of geometric imperfections in metallic materials — Part 1: Fusion welding

ISO 17636-1, Non-destructive testing of welds — Radiographic testing — Part 1: X- and gamma-ray techniques with film

ISO 17636-2, Non-destructive testing of welds — Radiographic testing — Part 2: X- and gamma-ray techniques with digital detectors

ISO 17637, Non-destructive testing of welds — Visual testing of fusion-welded joints

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 5817 apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at https://www.electropedia.org/

4 Symbols and abbreviations

For the purposes of this document, the symbols given in Table 1 apply

Table 1 — Symbols

A	is the sum of projected areas of indications related to each $L \times w_p$ in percentage (see Annex B)
b	is the width of excess penetration of weld, in millimetres
D	is the distance between indications
d	is the diameter of pore, in millimetres
d_{A}	is the diameter of area surrounding a group of gas holes (e.g. clustered porosity), in millimetres
h	is the width of indication, the width or height of surface or cross surface imperfection, in millimetres
1	is the length of indication, in millimetres (see also Figure C.3 and Figure C.4 for linear porosity)
L	is any 100 mm testing length, in millimetres (equivalent to $l_{ m p}$ in ISO 5817)
S	is the nominal butt weld thickness, in millimetres (see also ISO 2553)
t	is the material thickness, in millimetres
$w_{\rm p}$	is the width of the weld, in millimetres
$\sum l$	is the summary length of imperfections within L (indications shall not be divided into different ranges L)

5 Radiographic technique

Depending on the weld quality level, radiographic techniques class A or class B in accordance with ISO 17636-1 shall be used for RT-F as shown in <u>Table 2</u> and radiographic techniques class A or class B in accordance with ISO 17636-2 shall be used for RT-S or RT-D as shown in <u>Table 3</u>.

Table 2 — Radiographic testing with film (RT-F)

Quality levels in accordance with ISO 5817	Testing techniques and classes in accordance with ISO 17636-1 for RT-F	Acceptance levels in accordance		
В	8721b9370 B 86/iso-10675-1-2021	1		
С	Ba	2		
D	A	3		
However, the minimum number of exposures for circumferential weld testing can correspond to the requirements of				

class A of ISO 17636-1.

Table 3 — Radiographic testing with radioscopy (RT-S) and radiographic testing with digital

detectors (RT-D)

Quality levels in accordance with ISO 5817	Testing techniques and classes in accordance with ISO 17636-2 for RT-S and RT-D	Acceptance levels in accordance with this document	
В	В	1	
С	Ba	2	
D	A	3	

^a However, the minimum number of exposures for circumferential weld testing can correspond to the requirements of class A of ISO 17636-2.

6 General

Accessible areas of welded joints shall be visually tested in accordance with ISO 17637 and evaluated before radiographic testing. ISO 17635 provides information on the NDT for testing and evaluation of fusion welds in metallic materials. The IIW Reference radiographs^[3] may be used for assessment of weld imperfections according to ISO 5817 with examples of weld imperfections and its evaluation.

The acceptance levels of this document are basically valid for evaluation of imperfections which cannot be detected and evaluated by visual testing (see <u>Table 4</u>). Surface imperfections (see <u>Table 5</u>; such as undercut and excessive penetration, surface damage, weld spatter, etc.) which cannot be evaluated by visual testing due to object geometry, but where the interpreter suspects that the ISO 5817 quality levels are not fulfilled, shall be subject to more specific testing for quantification.

When quantification of undercut and/or excessive penetration by radiographic testing is required, specific procedures using test exposures may be applied in order to establish a basis for approximate quantification in accordance with the requirements of ISO 5817. This shall be specified in the adopted specification/procedure.

When assessing whether a weld meets the requirements specified for a weld quality level, the sizes of imperfections permitted by this document are compared with the dimensions of indications revealed by a radiograph made of the weld.

7 Acceptance levels

The acceptance levels for indications are shown in <u>Table 4</u> and <u>Table 5</u>. The types of imperfections are selected from ISO 5817 and specified in ISO 6520-1 (see <u>Annex A</u>).

Any two adjacent imperfections separated by a distance smaller than the major dimension of the smaller imperfection shall be considered as a single imperfection (see Annex C).

Annex B supports the visual evaluation of porosity.

Indications shall not be divided into different ranges, L.PREVIEW

Table 4 — Acceptance levels for internal indications in butt welds

No.	Type of internal imperfections/inanda accordance with ISO 6520-1	ISO 10675-1:202 rds. iteh. ai/catalog/standards/sist Acceptance level 3a 8/21b93/0686/iso-1067	11 07e82de5-fa36-4128-9367- Acceptance level 2 ^a 5-1-2021	Acceptance level 1
1	Cracks (100)	Not permitted	Not permitted	Not permitted
2a	Porosity and gas pores (2012, 2011) Single layer	$A \le 2.5 \%$ $d \le 0.4s$, max. 5 mm L = 100 mm	$A \le 1,5 \%$ $d \le 0,3s$, max. 4 mm L = 100 mm	$A \le 1 \%$ $d \le 0,2s$, max. 3 mm L = 100 mm
2b	Porosity and gas pores (2012, 2011) Multilayer	$A \le 5 \%$ $d \le 0.4s$, max. 5 mm L = 100 mm	$A \le 3 \%$ $d \le 0,3s, \text{ max. 4 mm}$ L = 100 mm	$A \le 2 \%$ $d \le 0,2s$, max. 3 mm L = 100 mm
3 ^b	Clustered (localized) porosity (2013)	$d_A \le w_p$, max. 25 mm $d \le 0.4s$, max. 5 mm	$d_{\rm A} \le w_{\rm p}$, max. 20 mm $d \le 0.3s$, max. 4 mm	$d_{\rm A} \le w_{\rm p}/2$, max. 15 mm $d \le 0.2s$, max. 3 mm
4°	Linear porosity (2014)	$l \le s$, max. 75 mm $d \le 0.4s$, max. 4 mm L = 100 mm	$l \le s$, max. 50 mm $d \le 0,3s$, max. 3 mm L = 100 mm	$l \le s$, max. 25 mm $d \le 0,2s$, max. 2 mm L = 100 mm
5 ^d	Elongated cavities (2015) and wormholes (2016)	h < 0.4s, max. 4 mm $\sum l \le s$, max. 75 mm L = 100 mm	h < 0.3s, max. 3 mm $\sum l \le s$, max. 50 mm L = 100 mm	h < 0.2s, max. 2 mm $\sum l \le s$, max. 25 mm L = 100 mm

 $^{^{\}rm a}$ Acceptance levels 3 and 2 may be specified with suffix X, which denotes that all indications over 25 mm are unacceptable.

b See Figure C.1 and Figure C.2.

c See <u>Figure C.3</u> and <u>Figure C.4</u>.

d See Figure C.5 and Figure C.6.

 $^{^{\}rm e}$ If the length of the weld is below 100 mm, then the maximum length of indications shall not exceed 25 % of that weld length.

Table 4 (continued)

No.	Type of internal imperfections in accordance with ISO 6520-1	Acceptance level 3 ^a	Acceptance level 2 ^a	Acceptance level 1
6 ^e	Shrinkage cavity (202) (other than crater pipes)	<i>h</i> < 0,4 <i>s</i> , max. 4 mm <i>l</i> ≤ 25 mm	Not permitted	Not permitted
7	Crater pipe (2024)	$h \le 0.2t$, max. 2 mm $l \le 0.2t$, max. 2 mm	Not permitted	Not permitted
8d	Slag inclusions (301), flux inclusions (302) and oxide inclusions (303)	h < 0.4s, max. 4 mm $\sum l \le s$, max. 75 mm L = 100 mm	h < 0.3s, max. 3 mm $\sum l \le s$, max. 50 mm L = 100 mm	h < 0.2s, max. 2 mm $\sum l \le s$, max. 25 mm L = 100 mm
9	Metallic inclusions (304) (other than copper)	<i>l</i> ≤ 0,4 <i>s</i> , max. 4 mm	<i>l</i> ≤ 0,3 <i>s</i> , max. 3 mm	<i>l</i> ≤ 0,2 <i>s</i> , max. 2 mm
10	Copper inclusions (3042)	Not permitted	Not permitted	Not permitted
11 ^e	Lack of fusion (401)	Not breaking the surface $l \le 0.4$ s, max. 4 mm Only intermittently and not breaking the surface $\Sigma I \le 25$ mm, $L = 100$ mm	Not permitted RD PREVIE	Not permitted
12e	Lack of penetration (402)	$\sum l \le 25 \text{ mm, } 100 \text{ mm}$	Not permitted 1)	Not permitted

a Acceptance levels 3 and 2 may be specified with suffix 15-which denotes that all indications over 25 mm are unacceptable. https://standards.iteh.ai/catalog/standards/sist/07e82de5-fa36-4128-9367-

Table 5 — Acceptance levels for surface imperfections

No.	Type of surface imperfections in accordance with ISO 6520-1	Acceptance level 3 ^a	Acceptance level 2 ^a	Acceptance level 1
13	Crater cracks (104)	Not permitted	Not permitted	Not permitted
14a	Undercut, continuous and intermittent (5011,5012) <i>t</i> > 3 mm	Smooth transition is required $h \le 0.2t$, max. 1 mm	Smooth transition is required $h \le 0.1t$, max. 0,5 mm	Smooth transition is required $h \le 0.05t$, max. 0,5 mm
14b ^b	Undercut, continuous and intermittent (5011,5012) $0.5 \text{ mm} \le t \le 3 \text{ mm}$	Smooth transition is required $l \le 25$ mm, $h \le 0.2t$	Smooth transition is required $l \le 25$ mm, $h \le 0.1t$	Smooth transition is required Not permitted

NOTE The acceptance levels are those specified for visual testing. These defects are normally evaluated by visual testing.

b See <u>Figure C.1</u> and <u>Figure C.2</u>.

⁸⁷²¹b9370686/iso-10675-1-2021

^c See <u>Figure C.3</u> and <u>Figure C.4</u>.

d See <u>Figure C.5</u> and <u>Figure C.6</u>.

 $^{^{\}rm e}$ If the length of the weld is below 100 mm, then the maximum length of indications shall not exceed 25 % of that weld length.

a Acceptance levels 3 and 2 can be specified with suffix X, which denotes that all indications over 25 mm are unacceptable.

 $^{^{\}rm b}$ If the length of the weld is below 100 mm, then the maximum length of indications shall not exceed 25 % of that weld length.

 Table 5 (continued)

No.	Type of surface imperfections in accordance with ISO 6520-1	Acceptance level 3a	Acceptance level 2 ^a	Acceptance level 1
15a ^b	Shrinkage groove (root undercut 5013) t > 3 mm	Smooth transition is required $l \le 25$ mm, $h \le 0.2t$, max. 2 mm	Smooth transition is required $l \le 25$ mm, $h \le 0.1t$, max. 1 mm	Smooth transition is required $l \le 25$ mm, $h \le 0.05t$, max. 0,5 mm
15b ^b	Shrinkage groove (root undercut 5013) $0.5 \text{ mm} \le t \le 3 \text{ mm}$	Smooth transition is required $h \le 0.2 \text{ mm} + 0.1t$	Smooth transition is required $l \le 25 \text{ mm}, h \le 0.1t$	Smooth transition required Not permitted
16a	Excess penetration (504) $0.5 \text{ mm} \le t \le 3 \text{ mm}$	$h \le 1 \text{ mm} + 0.6b$	$h \le 1 \text{ mm} + 0.3b$	$h \le 1 \text{ mm} + 0.1b$
16b	Excess penetration (504) $t > 3 \text{ mm}$	$h \le 1 \text{ mm} + 1,0b,$ max. 5 mm	$h \le 1 \text{ mm} + 0.6b$, max. 4 mm	$h \le 1 \text{ mm} + 0.2b$, max. 3 mm
17	Stray arc (601)	Permitted, if the properties of the parent metal are not affected.	Not permitted	Not permitted
18	Spatter (602)	Acceptance depends on	application, e.g. material, o	corrosion protection.
19a ^b	Root concavity (515) $0.5 \text{ mm} \le s \le 3 \text{ mm}$	$h \le 0.2 \text{ mm} + 0.1t$	$l \le 25 \text{ mm}, h \le 0.1t$	Not permitted
19b ^b	Root concavity (515)eh	1≤25 mm; h≤0,2t, D max. 2 mm	<i>l</i> ≤ 25 mm, <i>h</i> ≤ 0,1 <i>t</i> , max. 1 mm	$l \le 25 \text{ mm}, h \le 0.05t,$ max. 0,5 mm
20	Poor restart (517) $s \ge 0.5 \text{ mm}$	Permitted and sit The limit depends on the type of imperfec- tion (see ISO 5817):1202	Not permitted	Not permitted
21a ^b	Sagging (509) https://standards Incompletely filled groove (511) $0.5 \text{ mm} \le s \le 3 \text{ mm}$	Teh av catalog/standards/sist 25 mm, h ≤ 0,25 t 8721b9370686/iso-1067	0/e×2de3-la36-4128-9367- 25 mm, <i>h</i> ≤ 0,1 <i>t</i> 5-1-2021	Not permitted
21b ^b	Sagging (509) Incompletely filled groove (511) s > 3 mm	$l \le 25 \text{ mm}, h \le 0.25t,$ max. 2 mm	$l \le 25 \text{ mm}, h \le 0.1t,$ max. 1 mm	$l \le 25 \text{ mm}, h \le 0.05t,$ max. 0,5 mm
22a	Linear misalignment (507) $0.5 \text{ mm} \le s \le 3 \text{ mm}$	$h \le 0.2 \text{ mm} + 0.25t$	$h \le 0.2 \text{ mm} + 0.15t$	$h \le 0.2 \text{ mm} + 0.1t$
22b	Linear misalignment, longitudinal welds (507) $s > 3$ mm	$h \le 0,25t, \text{ max. 5 mm}$	$h \le 0.15t$, max. 4 mm	$h \le 0.1t$, max. 3 mm
22c	Linear misalignment, circumferential welds (507) $s \ge 0.5$ mm	$h \le 0.5 t$, max. 4 mm	$h \le 0.5 t$, max. 3 mm	$h \le 0.5 t$, max. 2 mm

NOTE The acceptance levels are those specified for visual testing. These defects are normally evaluated by visual testing.

^a Acceptance levels 3 and 2 can be specified with suffix X, which denotes that all indications over 25 mm are unacceptable.

b If the length of the weld is below 100 mm, then the maximum length of indications shall not exceed 25 % of that weld length.

Annex A

(informative)

Guidance to the limitations of radiographic testing

A.1 General

The numbers between brackets conform to those used in ISO 6520-1.

A.2 Volumetric imperfections in butt welds

- Porosities and gas pores (2011, 2012, 2013, 2014 and 2017)
- Wormholes and elongated cavities (2016 and 2015)
- Shrinkage, crater pipe (202, 2024)
- Solid inclusions (300)
- Copper inclusions (3042) iTeh STANDARD PREVIEW

The above imperfections listed in <u>Table 4</u> and <u>Table 5</u> are readily detected using radiographic techniques class A or class B of ISO 17636-1 for RT-F as shown in <u>Table 2</u>, or ISO 17636-2 for RT-S or RT-D as shown in <u>Table 3</u>.

ISO 10675-1:2021

A.3 Cracks in butt weldshttps://standards.iteh.ai/catalog/standards/sist/07e82de5-fa36-4128-9367-8721b9370686/iso-10675-1-2021

- Crater cracks (104)
- Cracks (100)

The detectability of cracks by radiographic testing depends on the crack height, the ramification (presence of branching parts), opening width, direction of the X-ray beam to crack orientation and radiographic technique parameters.

Reliable detection of all cracks is therefore limited. The use of radiographic techniques class B or better, as specified in ISO 17636-1 or ISO 17636-2, provide better crack detectability than radiographic techniques class A.

A.4 Planar imperfections in butt welds

- Lack of fusion (401)
- Lack of penetration (402)

The detection of lack of fusion and lack of penetration depends on characteristics of imperfections and radiographic technique parameters.

Lack of side wall fusion is probably not be detected (except it is associated with other imperfections such as slag inclusions), unless it is radiographed in the direction of the side wall.

Annex B

(informative)

Examples for determination of area percentage (%) of imperfections

Figure B.1 to Figure B.9 give a presentation of different area percentage (%) of imperfections in an area of 60 mm × 20 mm. This should assist the assessment of imperfections on radiographs.

Figure B.1 — A = 1 %, d = 1 mm, 15 pores

Figure B.2 $\frac{1}{150}A_1 = 1.5 \%_2 d = 1$ mm, 23 pores

https://standards.iteh.ai/catalog/standards/sist/07e82de5-fa36-4128-9367-

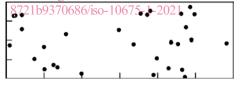


Figure B.3 — A = 2 %, d = 1 mm, 30 pores

Figure B.4 — A = 2.5 %, d = 1 mm, 38 pores

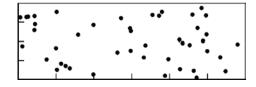


Figure B.5 — A = 3 %, d = 1 mm, 45 pores