INTERNATIONAL STANDARD

ISO 3749

First edition 2022-03

Glass syringes — **Determination of extractable tungsten**

Seringues en verre — Dosage du tungstène extractible

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 3740-2022

https://standards.iteh.ai/catalog/standards/sist/c1c6ad28-7a95-4bfa-9549-8dab27915cbd/iso-3749-2022

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 3749:2022

https://standards.iteh.ai/catalog/standards/sist/c1c6ad28-7a95-4bfa-9549-8dab27915cbd/iso-3749-2022

COPYRIGHT PROTECTED DOCUMENT

© ISO 2022

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Contents		Page
For	reword	iv
Intr	troduction	v
1	Scope	1
2	Normative references	
3	Terms and definitions	
4	Principle	
_	•	
5	Reagents	
6	Apparatus	2
7	Sample preparation 7.1 General	
8	Extraction by ultrasonics	
9	Analysis 9.1 General 9.2 ICP-MS 9.3 ICP-OES 9.4 Quality control 9.4.1 Measurement with ICP-MS or ICP-OES 9.4.2 Extraction efficiency 9.5 Expression of the results	5 5 5 5 5 5 5 5 5 5 5 5 5
10	Test report	6
Anr	nex A (informative) Spiking of syringes	7

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 76, *Transfusion, infusion and injection, and blood processing equipment for medical and pharmaceutical use.*

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

Glass syringes are typically produced from glass tubing via a hot-forming process.

One important step of this process is the cone formation and more importantly its opening with a pin that has the form of a filament and that is made of material resistant to high temperatures such as ceramics, tungsten and other.

This process is valid for the different syringe cone configurations such as Luer cone, Luer lock and also for staked needle syringes.

In the case of tungsten pins, tungsten residuals will form on the inner surface of the cone. These residues can affect the effectivity of the drug product e.g. causing aggregation of protein-based drugs. For this reason, the level of soluble tungsten residues needs to be controlled in certain applications.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 3749:2022

https://standards.iteh.ai/catalog/standards/sist/c1c6ad28-7a95-4bfa-9549-8dab27915cbd/iso-3749-2022

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 3749:2022

https://standards.iteh.ai/catalog/standards/sist/c1c6ad28-7a95-4bfa-9549-8dab27915cbd/iso-3749-2022

Glass syringes — Determination of extractable tungsten

1 Scope

This document specifies an analytical method to quantitatively determine the water-soluble amount of tungsten (W) from the inner surface of glass syringes.

The method can be applied to Luer cone, staked needle or Luer lock syringes.

Normative references 2

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 3696, Water for analytical laboratory use — Specification and test methods

ISO 11885, Water quality — Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES)

ISO 17294-2, Water quality — Application of inductively coupled plasma mass spectrometry (ICP-MS) — Part 2: Determination of selected elements including uranium isotopes

Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at https://www.electropedia.org/

Principle

This test method is intended to be used to determine the water-soluble tungsten content of glass syringes as produced and/or as delivered. The syringes to be tested are filled with water to their nominal volume. They are tightly capped and then extracted by ultrasonic treatment [(75 ± 5)°C, (60 ± 1) min]. The amount of extracted tungsten is determined by analysing the aqueous extracts with inductively coupled plasma (ICP) mass or optical emission spectrometry (ICP-MS or ICP-OES).

Reagents

- **Test water**, in accordance with ISO 3696 grade 2 or better.
- 5.2 Silicone oil polydimethylsiloxane.
- 5.3 **Nitric acid** (HNO₃), 65 % mass fraction, suprapure quality or better.
- 5.4 **Ammonium hydroxide solution** (NH₄OH), 25 % mass fraction, suprapure quality or better.

- **5.5 Diluent**, 5 % mass fraction in HNO_3 by dilution of <u>5.3</u> with test water or 0,5 % mass fraction NH_4OH by dilution of <u>5.4</u> with test water.
- **5.6 Stock solution**, 1 000 mg/l tungsten standard solution, ICP-MS grade, (e.g. in 5 % HNO₃ or 0,5 % NH₄OH).
- **5.7 Second stock solution**, from another supplier or another lot.
- **5.8 Standard solutions**, for ICP measurement (calibration and internal to be defined).

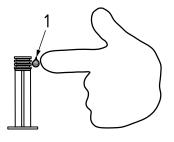
6 Apparatus

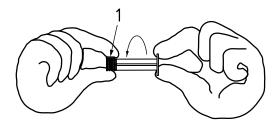
- **6.1 Ultrasonic bath**, able to hold a temperature of (75 ± 5) °C for 60 min, provide a frequency of 45 kHz and a specific power of at least 16 W/l.
- **6.2 Pipettes,** suitable for measuring the nominal volume, (e.g. 1 000 μ l), suitable for measuring the volume of stock solution for spiking syringes (5 μ l), suitable for preparing the calibration solutions.
- **6.3 Sample tubes**, polypropylene (PP), volume 15 ml.
- **6.4 ICP-mass spectrometer (ICP-MS) or ICP-optical emission spectrometer (ICP-OES)**, suitable to determine tungsten in aqueous solutions with appropriate limit of detection (e.g. 50 ng/ml or less in a diluted extract).

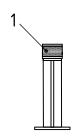
7 Sample preparation

ISO 3749:2022

7.1 General//standards.iteh.ai/catalog/standards/sist/c1c6ad28-7a95-4bfa-9549-8dab27915cbd/iso-


Due to the properties of the formation mechanism of tungsten residues in glass syringes, the variability of the extractable tungsten level within a series of syringes may be high. Taking this into account, a quantity of not less than 60 syringes per lot is recommended to be analysed. Each of the articles shall be identical in size and shape.


Depending on the nature of the syringes to be tested, the inner wall of the syringe glass barrel may need to be siliconized to allow the plunger rod movement.


7.2 Siliconization

For siliconization, a rubber stopper is mounted on a plunger rod. The side surface of the rubber stopper is then manually wetted with a small quantity of silicone oil [see Figure 1 a) and Figure 1 b)]. The quantity of silicone oil shall be calculated to apply a silicone amount of (9 ± 3) mg/cm² on the inner glass surface of the syringe. The silicone oil shall not reach the front surface of the rubber stopper [(see Figure 1 c)].

The plunger is then inserted into the syringe and moved several times upwards and downwards to distribute the silicone oil over the inner surface of the syringe, taking care of avoiding the contamination of the funnel with silicone oil. In case of siliconized syringes, this step is not necessary.

 a) Manual application of a silicone droplet onto the side surface of the rubber stopper

b) Distribution of silicone onto the rubber stopper by turning the mounted plunger rod

c) Final siliconized rubber stopper

Key

1 silicone oil

Figure 1 — Siliconization of the inner surface of the syringe barrel

7.3 Filling

7.3.1 General

The filling volume is the nominal volume of the syringe, (e.g. 1,0 ml for a 1 ml syringe). In case of syringes with different nominal volumes, care should be taken that extraction is focused on the cone area. The minimum volume should be 1 ml, except of 0,5 ml syringes.

7.3.2 Determination of the filling level 3749 2022

Fill the reference syringe with the exact filling volume of test water. Therefore, pipette the exact volume of test water (1,0 ml in case of 1 ml syringes) into a small cup (e.g. 2 ml vial). Aspirate the complete volume through the needle or the Luer channel into the syringe without capturing any air. Remove accidentally captured air bubbles by turning the syringe tip upwards and pushing the plunger rod carefully. Close the syringe with a tip cap or a needle shield, which is filled with test water. Mark the resulting filling level (position of the stopper) with a permanent marker. Then transfer this filling level from the reference syringe to the syringes to be tested by suitable means, e.g. by a ruler or a stencil, see Figure 2. Other methods ensuring the extraction efficiency and repeatability of the quantity of extraction media may be used, this should be validated by, e.g. using the spiking procedure in Annex A.

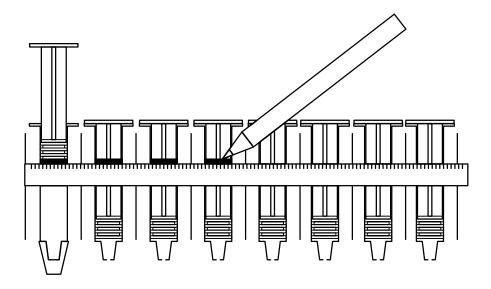


Figure 2 — Transfer of the filling level marks to the syringes to be tested

7.3.3 Filling of the syringes to be tested

Aspirate the test water through the syringe cone to tightly beneath the mark without capturing any air bubbles. Fill the tip cap/needle shield with test water and close the syringe with it. The excessive liquid shall be removed with a paper towel.

8 Extraction by ultrasonics

The extraction by ultrasonics shall be carried out twice on each test specimen with test water (5.1). Warm the ultrasonic bath beforehand to (75 ± 5) °C and make sure that the water level of the bath is correct. Put the syringes vertically (tip down) in a rack and then put it into the ultrasonic bath. Start the sonication process for 60 min at (75 ± 5) °C, 45 kHz specific power of at least 16 W/l.

When the extraction is finished, take out the rack from the ultrasonic bath (use oven gloves).

Gently dry every syringe, outside and inside up to the stopper, with paper towel.

Take the syringe, turn it tip cap facing up. Tap the tip cap to move the bubble towards the flow channel, screw the plunger rod on the stopper, pull the plunger to remove the water from the tip channel and then take off the tip cap. In case of needle shielded syringes pull the plunger to create a vacuum in the syringe and take off the rigid needle shield.

Flush the extraction solution into the sample tubes.

Rinse the syringes twice by aspirating 1 ml of purified water into each syringe and flush it into the same sample tube which contains the extraction solution. The volume of the first extract is 3,0 ml in case of a 1 ml syringe.

A second extraction shall be done with the same test syringes reproducing the same process from the beginning (filling of the syringes).

The second extraction solution is flushed into the same tube that contains the first extraction. The final volume after 2 extractions is in total 6,0 ml of extracted solution in case of a 1 ml syringe. In case of larger nominal volumes, the final volume should be as small as possible.

If a larger volume is necessary for analysis, enhance the dilution up to factor 10. For the dilution, the same diluent should be used as for the calibration standards. The concentration of standards and the final samples shall be comparable, (e.g. both 5 % HNO $_3$ or 0,5 % NH $_4$ OH).