INTERNATIONAL STANDARD

ISO 15875-3

> First edition 2003-12-01 **AMENDMENT 1** ISO pub-date

Plastics piping systems for hot and cold water installations — Crosslinked polyethylene (PE-X) —

Part 3: **Fittings**

AMENDMENT 1

Systèmes de canalisations en plastique pour les installations d'eau chaude et froide — Polyéthylène réticulé (PE-X) —

Partie 3: Raccords

AMENDEMENT 1

PROOF/ÉPREUVE

Reference number ISO 15875-3:2003/Amd.1:2020(E)

I ah Si A Dago Budanda kananan kananan kananan kanan k

COPYRIGHT PROTECTED DOCUMENT

© ISO 2020

ii

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 138, *Plastics pipes, fittings and valves for*

This document was prepared by Technical Committee ISO/TC 138, Plastics pipes, fittings and valves for the transport of fluids, Subcommittee SC 2, Plastics pipes and fittings for water supplies, in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 155, Plastics piping systems and ducting systems, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

A list of all parts in the ISO 15875 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

© ISO 2020 – All rights reserved **PROOF/ÉPREUVE** iii

Heli SI A De Rel Ville And And And Andread Standards Sandards Sand

Plastics piping systems for hot and cold water installations — Crosslinked polyethylene (PE-X) —

Part 3: **Fittings**

AMENDMENT 1

Normative references

Replace the reference to "EN 578" with the following:

ISO 7686, Plastics pipes and fittings — Determination of opacity

Replace the reference to "EN 579" with the following

ISO 10147, Pipes and fittings made of crosslinked polyethylene (PE-X) — Estimation of the degree of crosslinking by determination of the gel content

Replace the reference to "EN 921:1994" and to "EN 12107" with the following:

ISO 1167-1, Thermoplastics pipes, fittings and assemblies for the conveyance of fluids — Determination of the resistance to internal pressure — Part 1: General method

ISO 1167-3, Thermoplastics pipes, fittings and assemblies for the conveyance of fluids — Determination of the resistance to internal pressure — Part 3. Preparation of components

ISO 1167-4, Thermoplastics pipes, fittings and assemblies for the conveyance of fluids — Determination of the resistance to internal pressure — Part 4: Preparation of assemblies

4.1.1, Table 1

Replace the reference to "EN 921:1994 (together with EN 12107)" with "ISO 1167-1, ISO 1167-3 and ISO 1167-4".

4.1.2.1, first paragraph

Replace the reference to "EN 921:1994 (together with EN 12107)" with "ISO 1167-1, ISO 1167-3 and ISO 1167-4".

4.1.2.2, first paragraph

Replace the reference to "EN 921:1994" with "ISO 1167-1, ISO 1167-3 and ISO 1167-4".

5.2

Replace the reference to "EN 578" with "ISO 7686".

5.2, Table 3

Replace <u>Table 3</u> with the following table:

Table 3 — Socket dimensions for electrofusion fittings

Dimensions in millimetres

Nominal diameter of the fitting	Minimum mean inside diameter ^a of fusion zone	Nominal length of fusion zone	Depth of penetration	
$d_{\rm n}$	D _{1,min}	$L_{2,\mathrm{min}}$	$L_{1,\mathrm{min}}$	$L_{1,\mathrm{max}}$
16	16,1	10	20	35
20	20,1	10	20	37
25	25,1	10	20	40
32	32,1	10	20	44
40	40,1	10	20	49
50	50,1	10	20	55
63	63,2	11	23	63
75	75,2	12	25	70
90	90,2	13	28	79
110	110,3	15	32	85
125	125,3	16	35 md	90
140	140,3	18	191038	95
160	160,4	220 Kell	42	101
180	180,4	215. di	46 50	105
200	200,4	N23 nda and	<u> </u>	112
225	225,5	1 26 star dell'	55	120
250	250,5	Still 301 talogison	73	129

In piping systems that involve spigot trimming, smaller values for D_1 are permitted if in conformance to the manufacturer's specification.

Clause 8

Replace the reference to "EN 579" with "ISO 10147".

Clause 8, Table 5

Replace <u>Table 5</u> with the following table:

Table 5 — Degree of crosslinking

Crosslinking process	Degree of crosslinking	
peroxide PE-Xa	≥ 70 %	
silane PE-Xb	≥ 65 %	
electron beam PE-Xc	≥ 60 %	
azo PE-Xd	≥ 60 %	
UV-light initiated PE-Xe	≥ 70 %	

Heli SI A De Rel Ville And And And Andread Standards Sandards Sand

IT OH SI AND ARD RELIGIOUS AND STATE AND A STATE OF THE S