# DRAFT INTERNATIONAL STANDARD ISO/DIS 4216

ISO/TC 61/SC 12

Voting begins on: **2020-10-28** 

Secretariat: **JISC** 

Voting terminates on: 2021-01-20

## Thermosetting resin and UV curable resin — Determination of shrinkage by continuous measurement method

ICS: 83.080.10

## iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/DIS 4216 https://standards.iteh.ai/catalog/standards/sist/c5f7d64d-5676-4fd5-9cflb655ccf20be5/iso-dis-4216

THIS DOCUMENT IS A DRAFT CIRCULATED FOR COMMENT AND APPROVAL. IT IS THEREFORE SUBJECT TO CHANGE AND MAY NOT BE REFERRED TO AS AN INTERNATIONAL STANDARD UNTIL PUBLISHED AS SUCH.

IN ADDITION TO THEIR EVALUATION AS BEING ACCEPTABLE FOR INDUSTRIAL, TECHNOLOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT INTERNATIONAL STANDARDS MAY ON OCCASION HAVE TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL TO BECOME STANDARDS TO WHICH REFERENCE MAY BE MADE IN NATIONAL REGULATIONS.

RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT, WITH THEIR COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE AND TO PROVIDE SUPPORTING DOCUMENTATION. This document is circulated as received from the committee secretariat.



Reference number ISO/DIS 4216:2020(E)

## iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/DIS 4216 https://standards.iteh.ai/catalog/standards/sist/c5f7d64d-5676-4fd5-9cf1b655ccf20be5/iso-dis-4216



#### **COPYRIGHT PROTECTED DOCUMENT**

© ISO 2020

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Page

## Contents

| Forew                                                | ord                                                                                                                                                                   | iv                    |  |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|
| Introduction                                         |                                                                                                                                                                       | <b>v</b>              |  |
| 1                                                    | Scope                                                                                                                                                                 | 1                     |  |
| 2                                                    | Normative references                                                                                                                                                  | 1                     |  |
| 3                                                    | Terms and definitions                                                                                                                                                 | 1                     |  |
| 4                                                    | Principle                                                                                                                                                             | 2                     |  |
| 5                                                    | Test methods and test conditions   5.1 Test methods   5.2 Test conditions                                                                                             | 3                     |  |
| 6                                                    | Number of measurements                                                                                                                                                | 3                     |  |
| 7                                                    | Apparatus7.1Apparatus configuration7.2Sample container7.3Displacement gauge (thickness meter)7.4UV irradiation device7.5Heating/cooling device7.6Data processing unit | 3<br>4<br>5<br>5<br>5 |  |
| 8                                                    | Curing method TANDARD PREVIEW   8.1 UV curable resin curing method   8.2 Thermosetting resin curing methods.iteh.ai                                                   | 6                     |  |
| 9<br>10                                              | Measurement procedure<br><u>ISO/DIS 4216</u><br>Expression of results<br>https://standards/sist/c5f7d64d=5676=4fd5=9cf1=                                              | 6<br>6                |  |
| 11                                                   | Test report b655ccf20be5/iso-dis-4216                                                                                                                                 | 8                     |  |
| Annex                                                | Annex A (informative) Influencing factors on measurement                                                                                                              |                       |  |
| Annex B (informative) Examples of measurement result |                                                                                                                                                                       | 10                    |  |
| Annex                                                | C (informative) Description of measurement report                                                                                                                     | 12                    |  |

### Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see <a href="https://www.iso.org/directives">www.iso.org/directives</a>).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see <a href="https://www.iso.org/patents">www.iso.org/patents</a>).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see <a href="https://www.iso.org/iso/foreword.html">www.iso.org/iso/foreword.html</a>.

This document was prepared by Technical Committee [or Project Committee] ISO/TC 61, Plastics, Subcommittee SC 12, Thermosetting materials. ISO/DIS 4216 https://standards.iteh.ai/catalog/standards/sist/c5f7d64d-5676-4fd5-9cfl-

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

### Introduction

The use of a resin first requires curing it under specific conditions that vary depending on the product specification. During this curing process, chemical reactions occur and volatiles evaporate, and so the resin shrinks. This may cause defects, strength reduction, and the deformation of the finished parts or products, especially in high precision required applications.

The conventional method which measures the shrinkage of resin based on specific gravity requires long measurement time and an amount of resin about a few cubic centimetres. This sample size is larger than what is actually used in many applications such as the epoxy encapsulation compounds for integrated circuits, resin coating or adhesive for electronic devices. In order to improve the quality control and further promote the technical advancement of high precision production, a convenient and high accuracy method for determining the shrinkage of resin is essential.

A totally new measurement method has been developed to meet this demand, allowing to measure curing shrinkage continuously with just a trace amount of resin. Moreover, since measurements are taken continuously, the curing behaviour of resin such as thermal expansion and thermal contraction are also observed. This measurement method is described in this document.

## iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/DIS 4216 https://standards.iteh.ai/catalog/standards/sist/c5f7d64d-5676-4fd5-9cf1b655ccf20be5/iso-dis-4216

## iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/DIS 4216 https://standards.iteh.ai/catalog/standards/sist/c5f7d64d-5676-4fd5-9cflb655ccf20be5/iso-dis-4216

## Thermosetting resin and UV curable resin — Determination of shrinkage by continuous measurement method

SAFETY STATEMENT — Persons using this document should be familiar with normal laboratory practice, if applicable. This document does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices and to ensure compliance with any regulatory requirements.

#### 1 Scope

This document specifies the continuous measurement method of shrinkage for thermosetting resin and/or UV curable resin.

### 2 Normative references

The following referenced documents, in whole or in part, are normatively referenced in this document and are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 472, Plastics – Vocabulary

ISO 291, Plastics — Standard atmospheres for conditioning and testing

<u>ISO/DIS 4216</u>

#### 3 Terms and definitions: iteh.ai/catalog/standards/sist/c5f7d64d-5676-4fd5-9cfl-

b655ccf20be5/iso-dis-4216

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at <u>https://www.iso.org/obp</u>

— IEC Electropedia: available at http://www.electropedia.org/

#### 3.1

#### UV curable resin

Resin which is cured by receiving energy from UV rays

#### 3.2

#### thermosetting resin

resin which is cured by receiving energy from heat

#### 3.3

#### curing condition

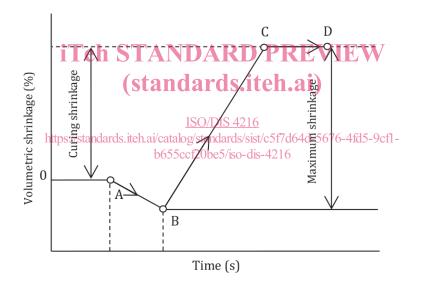
the UV irradiation and/or heating condition for curing resin

#### 3.4

#### curing shrinkage

the ratio of the change in resin volume due to curing process to the resin volume before curing (percentage of shrinkage due to curing of resin)

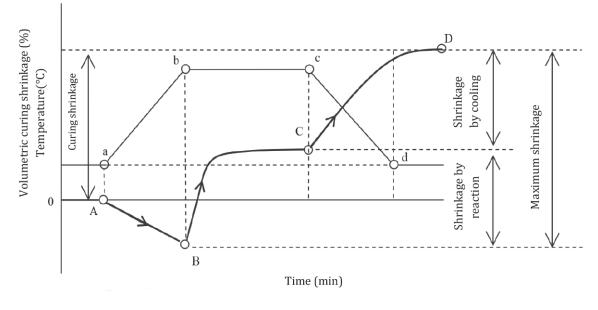
#### 4 Principle


Cure the resin inside a sample container and continuously measure the changes of sample thickness. Since the horizontal cross-sectional area of resin sample remains constant due to the sidewalls of the sample container, the changes in sample volume are proportional to the changes in the sample thickness. Therefore, shrinkage of resin is calculated from the changes in sample thickness.

Shrinkage (%) =  $\frac{\text{initial sample thickness} - \text{sample thickness at an abitrary time}}{\text{initial sample thickness}} \times 100$ 

In addition to the determination of the curing shrinkage, this continuous measurement technique also allows to see the volumetric changing behaviour of a resin at the time it is being irradiated by UV, heated, or cooled during the curing process.

NOTE 1 Typically, upon irradiation by UV rays, UV curable resins expand immediately then contract as curing proceeds (Figure 1). However, some types of UV curable resin exhibit fast reactions wherein shrinkage starts immediately right after irradiation (Figure B.1).


NOTE 2 When a thermosetting resin undergoes heating, thermal expansion occurs due to the increase in the resin temperature. This expansion continues as the temperature rises. When the curing temperature is reached, curing begins and the resin then starts to contract. This shrinkage continues until the resin is fully cured and returned to room temperature (Figure 2).



#### Кеу

- A irradiation start point = Curing start point
- B shrinkage start point
- C curing finish point
- D shrinkage finish point

#### Figure 1 — Curing behaviour of UV curable resin



#### Кеу

- A start heating point
- B start curing point
- C curing finish point
- D shrinkage finish point Teh STANDARD PREVIEW

## Figure 2 (standards iteh ai)

Room temperature: a, d

Curing temperature: b, c

ISO/DIS 4216

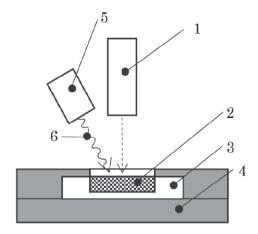
#### 5 Test methods and test conditions/ 5 Test methods and test condit

#### 5.1 Test methods

The test methods are classified according to the curing conditions applied to the resin. There are three different types of curing condition: UV curing, thermal curing, and a combination of UV and thermal curing.

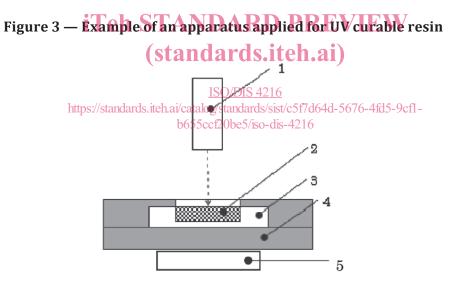
#### 5.2 Test conditions

Conduct measurements in the Standard Laboratory Atmosphere of  $23 \pm 2$  °C (73.4 ± 3.6 °F) and  $50 \pm 5$  % relative humidity, unless otherwise specified in the experiment conditions.


#### 6 Number of measurements

Three or more samples shall be tested for each curing condition.

#### 7 Apparatus


#### 7.1 Apparatus configuration

An apparatus for measuring the curing shrinkage of resin by this method is a system that consists of different units. Primarily, it includes a sample container, displacement gauge, UV irradiation device, heating/cooling device, etc. Figure 3 shows an example of an apparatus configuration compatible with a UV curable resin, and Figure 4 shows an example of an apparatus configuration corresponding to a thermosetting resin.



#### Key

- 1 displacement gauge
- 2 sample
- 3 sample container
- 4 measuring stage
- 5 UV irradiation device
- 6 UV beams



#### Key

- 1 displacement gauge
- 2 sample
- 3 sample container
- 4 measuring stage
- 5 heating/cooling device

#### Figure 4 — Example of an apparatus applied for thermosetting resin

#### 7.2 Sample container

A sample container of accurately known volume and dimensions shall be used. To ensure an accurate measurement, container material should be used which does not cause either the detachment of resin from the bottom after curing or absorb the sample via the wall surfaces. Moreover, in order to calculate

easily the container capacity/volume, the sample container should have a smooth bottom surface and cylindrical shape.



#### a) Sectional view



#### b) Top view

#### Figure 5 — Sample container

(Typical dimensions)

Depth: 0.5 mm~3 mm

Inner diameter: 10 mm~15 mm

## 7.3 Displacement gauge (thickness meter) D PREVIEW

The displacement gauge shall be a non-contact type that does not affect the sample and can capture displacement data over time. Moreover, its resolution shall be lower than  $1/10^{\text{th}}$  the change in sample thickness.

ISO/DIS 4216

NOTE Non-contact displacement gauge can be a laser 5 displacement gauge, a spectral interference laser displacement gauge, etc. b655ccf20be5/iso-dis-4216

#### 7.4 UV irradiation device

A UV irradiation device used in shrinkage measurement of a UV curable resin consists of a light source unit and a wavelength selection unit. It shall be capable of irradiating the sample uniformly and with sufficient illuminance to cure the resin.

#### 7.5 Heating/cooling device

A heating/cooling device that can control the temperature of measuring stage, maintain it within ±3 °C of the setting value (room temperature to curing temperature), and provide enough heating and cooling capacity shall be used.

For example, when the sample is an epoxy resin, a device which has heating capacity of at least 150 °C shall be used to obtain a sufficient curing state.

#### 7.6 Data processing unit

The measurement data is calculated according to <u>Clause 10</u> and shall be sequentially recorded as a volume reduction rate over time. The capture interval and processing speed of the data processing unit shall be compatible with the curing rate of the sample.