

SLOVENSKI STANDARD
oSIST prEN IEC 62590-3-1:2024
01-oktober-2024

Železniške naprave - Fiksni postroji - Elektronski elektroenergetski pretvornik - 3-1. del: Sistem vleke z izmenično napetostjo - Elektronski elektroenergetski kompenzator

Railway applications - Fixed installations - Electronic power converters - Part 3-1: AC traction applications - Electronic power compensators

Bahnanwendungen - Ortsfeste Anlagen - Leistungselektronische Stromrichter - Teil 3-1: Anwendungen der Wechselstrom-Zugförderung - Elektronische Leistungskompensatoren

Applications ferroviaires – Installations fixes – Convertisseurs électroniques de puissance – Partie 3-1: Applications de traction en courant alternatif – Compensateurs électroniques de puissance

[oSIST prEN IEC 62590-3-1:2024](https://standards.iteh.ai/oSIST-prEN-IEC-62590-3-1:2024)

<https://standards.iteh.ai/oSIST-prEN-IEC-62590-3-1:2024> Ta slovenski standard je istoveten z: 36-5 prEN 62590-3-1:2024 1585/osit-pren-iec-62590-3-1-2024

ICS:

45.060.01 Železniška vozila na splošno Railway rolling stock in general

oSIST prEN IEC 62590-3-1:2024 **en**

EUROPEAN STANDARD
NORME EUROPÉENNE
EUROPÄISCHE NORM

DRAFT
prEN 62590-3-1

August 2024

ICS 45.060.01

English Version

Railway applications - Fixed installations - Electronic power converters - Part 3-1: AC traction applications - Electronic power compensators
(IEC 62590-3-1:2022)

Applications ferroviaires - Installations fixes -
 Convertisseurs électroniques de puissance - Partie 3-1:
 Applications de traction en courant alternatif -
 Compensateurs électroniques de puissance
 (IEC 62590-3-1:2022)

Bahnanwendungen - Ortsfeste Anlagen -
 Leistungselektronische Stromrichter - Teil 3-1:
 Anwendungen der Wechselstrom-Zugförderung -
 Elektronische Leistungskompensatoren
 (IEC 62590-3-1:2022)

This draft European Standard is submitted to CENELEC members for enquiry.
 Deadline for CENELEC: 2024-11-01.

The text of this draft consists of the text of IEC 62590-3-1:2022 (9/2843/FDIS).

If this draft becomes a European Standard, CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

This draft European Standard was established by CENELEC in three official versions (English, French, German).
 A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and the United Kingdom.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Warning : This document is not a European Standard. It is distributed for review and comments. It is subject to change without notice and shall not be referred to as a European Standard.

European Committee for Electrotechnical Standardization
 Comité Européen de Normalisation Electrotechnique
 Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

prEN 62590-3-1:2024 (E)**European foreword**

This document (prEN 62590-3-1:2024) consists of the text of IEC 62590-3-1:2022, prepared by IEC/TC 9 “Electrical equipment and systems for railways”.

This document is currently submitted to the Enquiry.

The following dates are proposed:

- latest date by which the existence of (doa) dor + 6 months
this document has to be announced at national level
- latest date by which this document has to be (dop) dor + 12 months
implemented at national level by publication of an identical national standard or by endorsement
- latest date by which the national standards (dow) dor + 36 months
conflicting with this document have to be withdrawn
(to be confirmed or modified when voting)

iTeh Standards
(<https://standards.iteh.ai>)
Document Preview

[oSIST prEN IEC 62590-3-1:2024](https://standards.iteh.ai/catalog/standards/sist/ec2cdc66-5d9c-449d-b68a-8e20153d1585/osist-pren-iec-62590-3-1-2024)

<https://standards.iteh.ai/catalog/standards/sist/ec2cdc66-5d9c-449d-b68a-8e20153d1585/osist-pren-iec-62590-3-1-2024>

Annex ZA

(normative)

Normative references to international publications with their corresponding European publications

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: www.cencenelec.eu.

Publication	Year	Title	EN/HD	Year
IEC 60050-151	2001	International Electrotechnical Vocabulary - Part 151: Electrical and magnetic devices	-	-
+ AMD1	2013		-	-
+ AMD2	2014		-	-
+ AMD3	2019		-	-
+ AMD4	2020		-	-
+ AMD5	2021		-	-
IEC 60146-1-1	2009	Semiconductor converters - General requirements and line commutated converters - Part 1-1: Specification of basic requirements	EN 60146-1-1	2010
IEC 60146-2	1999	Semiconductor converters - Part 2: Self-commutated semiconductor converters including direct d.c. converters	EN 60146-2	2000
IEC 60529	-	Degrees of protection provided by enclosures (IP Code)	-	-
IEC 60850	-	Railway applications - Supply voltages of traction systems	-	-
IEC 61000-4-30	2015	Electromagnetic compatibility (EMC) - Part 4-30: Testing and measurement techniques - Power quality measurement methods	EN 61000-4-30	2015
+ A1	2021		+ A1	2021
IEC 61936-1	-	Power installations exceeding 1 kV AC and 1,5 kV DC - Part 1: AC	EN IEC 61936-1	-
IEC 62236-2	-	Railway applications - Electromagnetic compatibility -- Part 2: Emission of the whole railway system to the outside world	-	-

prEN 62590-3-1:2024 (E)

<u>Publication</u>	<u>Year</u>	<u>Title</u>	<u>EN/HD</u>	<u>Year</u>
IEC 62236-5	-	Railway applications - Electromagnetic compatibility -- Part 5: Emission and immunity of fixed power supply installations and apparatus	-	-
IEC 62313	-	Railway applications - Power supply and rolling stock - Technical criteria for the coordination between power supply (substation) and rolling stock	-	-
IEC 62590	2019	Railway applications - Fixed installations - Electronic power converters for substations	-	-
IEC 62695	2014	Railway applications - Fixed installations - Traction transformers	-	-

iTeh Standards
(<https://standards.iteh.ai>)
Document Preview

[oSIST prEN IEC 62590-3-1:2024](https://standards.iteh.ai/catalog/standards/sist/ec2cdc66-5d9c-449d-b68a-8e20153d1585/osist-pren-iec-62590-3-1-2024)

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Railway applications – Fixed installations – Electronic power converters –
Part 3-1: AC traction applications – Electronic power compensators

Applications ferroviaires – Installations fixes – Convertisseurs électroniques de puissance –
Partie 3-1: Applications de traction en courant alternatif – Compensateurs électroniques de puissance

<https://standards.iteh.ai/catalog/standards/sist/ec2cde66-5d9c-449d-b68a-8e20153d1585/osist-pren-iec-62590-3-1-2024>

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

COMMISSION
ELECTROTECHNIQUE
INTERNATIONALE

ICS 45.060.01

ISBN 978-2-8322-4774-7

Warning! Make sure that you obtained this publication from an authorized distributor.
Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

CONTENTS

FOREWORD	5
INTRODUCTION	7
1 Scope	8
2 Normative references	8
3 Terms, definitions and abbreviated terms	9
3.1 Terms and definitions	9
3.2 Abbreviated terms	14
4 Types of electronic power compensators	14
4.1 General	14
4.2 Single-phase equipment which injects reactive power into a 1AC traction system	17
4.2.1 General	17
4.2.2 Equipment installed on the far end or middle of a 1AC traction system	17
4.2.3 Equipment installed on the near end of a 1AC traction system	18
4.3 Multi-phase equipment connected to the 1AC traction side	18
4.3.1 General	18
4.3.2 Equipment exchanging active power between a pair of different 1AC circuits and/or injecting reactive power into 1AC circuits	18
4.3.3 Application of Steinmetz principle	21
4.3.4 Equipment connected to the traction side of the V-connection transformer	22
4.4 Application on 3AC power network	23
4.4.1 General	23
4.4.2 Equipment connected to the 3AC power network side of a traction transformer	23
5 Design and integration	25
5.1 General	25
5.2 Survey of power quality criteria	26
5.3 Survey of the condition of the 3AC power network	26
5.4 Traction load requirements	26
5.5 Estimation of the power quality without any countermeasures	26
5.5.1 General	26
5.5.2 Calculation of voltage drop in a 1AC traction system	26
5.5.3 Calculation of three-phase imbalance at the interface to 3AC power network	27
5.5.4 Calculation of power factor at the interface to 3AC power network	27
5.6 Choice of the countermeasures	27
5.7 Evaluation of the electronic power compensator	27
5.8 Specification of the electronic power compensator	28
5.8.1 General	28
5.8.2 Coordination with other systems	28
6 Performance requirements	28
6.1 General	28
6.1.1 Rating	28
6.1.2 Number of connected phases	29
6.1.3 Temperature rise	29
6.1.4 Losses and efficiency	29

6.2	Control and protective function	30
6.2.1	Start and stop sequence	30
6.2.2	Control function	31
6.2.3	Protective function	31
6.3	Electromagnetic compatibility (EMC)	31
6.4	Harmonics	32
6.5	Failure conditions for the electronic power compensator	32
6.6	Mechanical characteristics	32
6.6.1	General	32
6.6.2	Safety requirements for maintenance	33
6.6.3	Environmental conditions	33
6.6.4	Degree of protection	33
6.7	Electrical safety requirements for maintenance	33
6.8	Rating plate	33
7	Tests	34
7.1	Test category	34
7.1.1	General	34
7.1.2	Type test	34
7.1.3	Routine test	34
7.1.4	Large equipment	35
7.1.5	Overview of tests	35
7.2	Test items	36
7.2.1	Visual inspection	36
7.2.2	Test of accessory and auxiliary components	36
7.2.3	Insulation test	36
7.2.4	Start and stop sequence test	37
7.2.5	Checking of the protective functions	37
7.2.6	Control function test	37
7.2.7	Light load functional test	37
7.2.8	Load test	38
7.2.9	Temperature rise test	38
7.2.10	Power loss determination	38
7.2.11	Acoustic noise measurement	38
7.2.12	EMC test	38
7.2.13	Harmonic measurement	39
7.2.14	Degree of protection test	39
Annex A (informative)	Calculation of voltage drop in a 1AC traction system	40
Annex B (informative)	Calculation of three-phase imbalance at the interface to a 3AC power network	41
Annex C (informative)	Examples of limits of power quality at the interface to a 3AC power network	43
C.1	General	43
C.2	Examples of limits of three-phase imbalance	43
C.3	Examples of limits of harmonics	44
C.3.1	General	44
C.3.2	Japan	45
C.3.3	China	45
C.3.4	France	46
Bibliography	47	

Figure 1 – Example of the possible electrical position of electronic power compensators	15
Figure 2 – Single-phase equipment installed on the far end or middle of a 1AC traction system	17
Figure 3 – Single-phase equipment installed on the near end of a 1AC traction system	18
Figure 4 – Equipment exchanging active power between a pair of orthogonal 1AC circuits and/or injecting reactive power into 1AC circuits	20
Figure 5 – Application of Steinmetz principle	22
Figure 6 – Equipment connected to traction side of the V-connection traction transformer	23
Figure 7 – Equipment which reduces imbalance at the 3AC power network side of a traction transformer	24
Figure 8 – Equipment which reduces imbalance generated in multiple traction substations as a whole	25
Figure A.1 – Calculation of voltage drop in a 1AC traction system	40
Figure B.1 – Typical interface methods between power network and 1AC traction system	41
Table 1 – Types of typical electronic power compensators	16
Table 2 – Immunity level	32
Table 3 – Overview of tests	35
Table B.1 – Formulae to calculate voltage imbalance at primary side of a traction transformer	41
Table C.1 – Examples of limits of three-phase imbalance	44
Table C.2 – Limitation of harmonic content in Japan	45
Table C.3 – Limitation of harmonic content in China	45
Table C.4 – Factors for limitation of harmonic content in France	46

INTERNATIONAL ELECTROTECHNICAL COMMISSION

**RAILWAY APPLICATIONS – FIXED INSTALLATIONS –
ELECTRONIC POWER CONVERTERS –****Part 3-1: AC traction applications –
Electronic power compensators****FOREWORD**

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 62590-3-1 has been prepared by IEC technical committee 9: Electrical equipment and systems for railways. It is an International Standard.

The text of this International Standard is based on the following documents:

Draft	Report on voting
9/2843/FDIS	9/2864/RVD

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

A list of all parts in the IEC 62590 series, published under the general title *Railway applications – Fixed installations – Electronic power converters*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

iTeh Standards (<https://standards.iteh.ai>) Document Preview

[oSIST prEN IEC 62590-3-1:2024](https://standards.iteh.ai/catalog/standards/sist/ec2cdc66-5d9c-449d-b68a-8e20153d1585/osist-pren-iec-62590-3-1-2024)

<https://standards.iteh.ai/catalog/standards/sist/ec2cdc66-5d9c-449d-b68a-8e20153d1585/osist-pren-iec-62590-3-1-2024>

INTRODUCTION

Single-phase AC traction systems are typically used for railway lines with high power load up to the double-digit MW range. The nature of the loads serving the intended traffic in those railway lines leads to permanent power fluctuations. Due to their inherent structure, single-phase traction systems are prone to having difficulty with power quality indicators such as power factor, voltage fluctuation and/or imbalance within the electric traction system and/or the feeding three-phase power network. In order to improve the power quality, an electronic power compensator can be applied.

Components of electronic power compensators especially electronic power converters must withstand the more rugged electric environment when compared with those for other industrial use, due to the nature of electric traction systems mentioned above. This includes not only high load fluctuation, but also frequent switching operation with inrush current and short circuits caused by faults on the overhead contact line systems. Therefore, specific requirements are needed in addition to the common requirements for converters for other industrial use.

This document defines typical system configurations and basic requirements as well as appropriate test methods for electronic power compensators used for single-phase AC traction systems. This document is intended for the use by railway operators, manufacturers and system integrators.

iTeh Standards (<https://standards.iteh.ai>) Document Preview

[oSIST prEN IEC 62590-3-1:2024](#)

<https://standards.iteh.ai/catalog/standards/sist/ec2cdc66-5d9c-449d-b68a-8e20153d1585/osist-pren-iec-62590-3-1-2024>

RAILWAY APPLICATIONS – FIXED INSTALLATIONS – ELECTRONIC POWER CONVERTERS –

Part 3-1: AC traction applications – Electronic power compensators

1 Scope

This document specifies the requirements and test methods for electronic power compensators for 1AC traction systems. This equipment is used to improve electric power quality inside the electric traction system and/or at the interface to the 3AC power network, applying power electronics technology.

This document applies to equipment which is installed to achieve one or more of the following objectives as its function(s):

- to mitigate voltage fluctuation;
- to improve power factor;
- to reduce imbalance at the interface to the 3AC power network.

NOTE In some cases, this type of equipment is used to reduce harmonics from the traction load towards the 3AC power network, and for energy saving.

The equipment designed to conform to each particular installation site and the packaged equipment for generic use both fall within the scope of this document.

This document applies to equipment with all possible configurations to implement different technical solutions for compensation, but equipment consisting of only passive components is excluded.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050-151:2001, *International Electrotechnical Vocabulary (IEV) – Part 151: Electrical and magnetic devices*

IEC 60050-151:2001/AMD1:2013

IEC 60050-151:2001/AMD2:2014

IEC 60050-151:2001/AMD3:2019

IEC 60050-151:2001/AMD4:2020

IEC 60050-151:2001/AMD5:2021

IEC 60146-1-1:2009, *Semiconductor converters – General requirements and line commutated converters – Part 1-1: Specification of basic requirements*

IEC 60146-2:1999, *Semiconductor converters – Part 2: Self-commutated semiconductor converters including direct d.c. converters*

IEC 60529, *Degrees of protection provided by enclosures (IP Code)*