

Designation: B211M - 12

Standard Specification for Aluminum and Aluminum-Alloy Rolled or Cold-Finished Bar, Rod, and Wire (Metric)¹

This standard is issued under the fixed designation B211M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1. Scope*

1.1 This specification covers rolled or cold-finished bar, rod, and wire in alloys (Note 1) and tempers as shown in Table 2.

Note 1—Throughout this specification use of the term *alloy* in the general sense includes aluminum as well as aluminum alloy.

Note 2—The term *cold finished* is used to indicate the type of surface finish, sharpness of angles, and dimensional tolerances produced by drawing through a die.

Note 3—See Specification B221M for aluminum and aluminum-alloy extruded bars, rods, wire, shapes, and tubes; and Specification B316/B316M for aluminum and aluminum-alloy rivet and cold-heading wire and rods.

- 1.2 Alloy and temper designations are in accordance with ANSI H35.1M. The equivalent Unified Numbering System alloy designations are those of Table 1 preceded by A9, for example, A91100 for aluminum 1100 in accordance with Practice E527.
- 1.3 This specification is the metric counterpart of Specification B211.
- 1.4 For acceptance criteria for inclusion of new aluminum and aluminum alloys in this specification, see Annex A2.

2. Referenced Documents

2.1 The following documents of the issue in effect on date of material procurement form a part of this specification to the extent referenced herein.

2.2 ASTM Standards:²

B221M Specification for Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes (Metric) B316/B316M Specification for Aluminum and Aluminum-Alloy Rivet and Cold-Heading Wire and Rods

B557M Test Methods for Tension Testing Wrought and Cast

Aluminum- and Magnesium-Alloy Products (Metric)

B594 Practice for Ultrasonic Inspection of Aluminum-Alloy Wrought Products for Aerospace Applications

B660 Practices for Packaging/Packing of Aluminum and Magnesium Products

B666/B666M Practice for Identification Marking of Aluminum and Magnesium Products

B881 Terminology Relating to Aluminum- and Magnesium-Alloy Products

B918 Practice for Heat Treatment of Wrought Aluminum Alloys

E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications

E34 Test Methods for Chemical Analysis of Aluminum and Aluminum-Base Alloys

E290 Test Methods for Bend Testing of Material for Ductility

E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

E607 Test Method for Atomic Emission Spectrometric Analysis Aluminum Alloys by the Point to Plane Technique Nitrogen Atmosphere³

E716 Practices for Sampling and Sample Preparation of Aluminum and Aluminum Alloys for Determination of Chemical Composition by Spectrochemical Analysis

E1004 Test Method for Determining Electrical Conductivity Using the Electromagnetic (Eddy-Current) Method

E1251 Test Method for Analysis of Aluminum and Aluminum Alloys by Spark Atomic Emission Spectrometry

G47 Test Method for Determining Susceptibility to Stress-Corrosion Cracking of 2XXX and 7XXX Aluminum Alloy Products

2.3 ANSI Standards:

H35.1M Alloy and Temper Designation Systems for Aluminum⁴

H35.2M Dimensional Tolerances for Aluminum Mill Products⁴

¹ This specification is under the jurisdiction of ASTM Committee B07 on Light Metals and Alloys and is the direct responsibility of Subcommittee B07.03 on Aluminum Alloy Wrought Products.

Current edition approved Jan. 15, 2012. Published March 2012. Originally approved in 1979. Last previous edition approved in 2003 as B211M-03. DOI: 10.1520/B0211M-12.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

³ Withdrawn. The last approved version of this historical standard is referenced on www.astm.org.

⁴ Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036, http://www.ansi.org.

TABLE 1 Chemical Composition Limits^{A,B,C,D}

A.II	Si	Fe	Fe Cu	NA	M	g Cr	Ni	Zn	Ti	Bi	Pb	Sn	Other Elements ^E		A I
Alloy				Mn	Mg				11				Each	Total ^F	- Aluminum
1100 ^G	0.95 Si +	- Fe	0.05-0.20	0.05				0.10					0.05	0.15	99.00 min^H
2011	0.40	0.7	5.0-6.0					0.30		0.20-0.6	0.20-0.6		0.05	0.15	remainder
2014	0.50 - 1.2	0.7	3.9-5.0	0.40 - 1.2	0.20-0.8	0.10		0.25	0.15			0.15	0.05	0.15	remainder
2017	0.20-0.8	0.7	3.5-4.5	0.40 - 1.0	0.40-0.8	0.10		0.25	0.15			0.15	0.05	0.15	remainder
2024	0.50	0.50	3.8-4.9	0.30 - 0.9	1.2-1.8	0.10		0.25	0.15			0.15	0.05	0.15	remainder
2219	0.20	0.30	5.8-6.8	0.20-0.40	0.02			0.10	0.02-0.10			0.02-0.10	0.05'	0.15'	remainder
3003	0.6	0.7	0.05-0.20	1.0-1.5				0.10					0.05	0.15	remainder
4032	11.0-13.5	1.0	0.50 - 1.3		0.8 - 1.3	0.10	0.5-1.3	0.25					0.05	0.15	remainder
5052	0.25	0.40	0.10	0.10	2.2 - 2.8	0.15-0.35		0.10					0.05	0.15	remainder
5056	0.30	0.40	0.10	0.05-0.20	4.5 - 5.6	0.05-0.20		0.10					0.05	0.15	remainder
5154 ^G	0.25	0.40	0.10	0.10	3.1 - 3.9	0.15-0.35		0.20	0.20			0.20	0.05	0.15	remainder
6013	0.6-1.0	0.50	0.6-1.1	0.20-0.8	0.8 - 1.2	0.10		0.25	0.10				0.05	0.15	remainder
6020	0.40-0.9	0.50	0.30-0.9	0.35	0.6 - 1.2	0.15		0.20	0.15		0.05	0.9-1.5	0.05	0.15	remainder
6061	0.40-0.8	0.7	0.15-0.40	0.15	0.8 - 1.2	0.04-0.35		0.25	0.15			0.15	0.05	0.15	remainder
6110	0.7 - 1.5	8.0	0.20-0.7	0.20-0.7	0.50 - 1.1	0.04-0.25		0.30	0.15			0.15	0.05	0.15	remainder
6262	0.40-0.8	0.7	0.15-0.40	0.15	0.8 - 1.2	0.04-0.14		0.25		0.40-0.7	0.40-0.7	0.15	0.05	0.15	remainder
7075	0.40	0.50	1.2-2.0	0.30	2.1–2.9	0.18-0.28		5.1-6.1				0.20	0.05	0.15	remainder

^A Limits are in mass percent maximum unless otherwise shown.

2.4 Federal Standard:

Fed. Std. No. 123 Marking for Shipment (Civil Agencies)⁵

2.5 Military Standard:

MIL-STD-129 Marking for Shipment and Storage⁵

2.6 Aerospace Material Specification:

AMS 2772 Heat Treatment of Aluminum Alloy Raw Materials⁶

2.7 The Aluminum Association:

International Alloy Designations and Chemical Composition
Limits for Wrought Aluminum and Wrought Aluminum
Alloys⁷

2.8 Other Standards:

CEN EN 14242 Aluminium and Aluminium Alloys–Chemical Analysis–Inductively Coupled Plasma Optical Emission Spectral Analysis⁸

3. Terminology

- 3.1 Definitions:
- 3.1.1 Refer to Terminology B881 for definitions of product terms used in this specification.

- 3.1.2 *flatten and slit wire*—flatten wire which has been slit to obtain square edges.
 - 3.2 Definitions of Terms Specific to This Standard:
- 3.2.1 capable of—The term capable of as used in this specification means that the test need not be performed by the producer of the material. However, should subsequent testing by the purchaser establish that the material does not meet these requirements, the material shall be subject to rejection.

4. Ordering Information

- 4.1 Orders for material to this specification shall include the following information:
 - 4.1.1 This specification number,
 - 4.1.2 Quantity in pieces or kilograms,
 - 4.1.3 Alloy (Section 7),
 - 4.1.4 Temper (Section 9),
- 4.1.5 *Product Form*—Rolled or cold-finished bar, rolled or cold-finished rod, or wire.
- 4.1.6 Geometry and Dimensions—Diameter for rounds; distance across flats for square-cornered squares, hexagons, or octagons; width and depth for square-cornered rectangles (orders for squares, hexagons, octagons, or rectangles with rounded corners usually require a drawing),
 - 4.1.7 Length,
- 4.1.8 Tensile property limits and dimensional tolerances for sizes not covered in Table 2 and in ANSI H35.2M, respectively.

 $^{^{\}it B}$ Analysis shall be made for the elements for which limits are shown in this table.

^C For purposes of determining conformance to these limits, an observed value or a calculated value obtained from analysis shall be rounded to the nearest unit in the last right-hand place of figures used in expressing the specified limit, in accordance with the rounding-off method of Practice E29.

^D In case of any discrepancy in the values listed in Table 3 when compared with those listed in the "Teal Sheets" (International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys), the composition limits registered with The Aluminum Association and published in the "Teal Sheets" shall be considered the controlling composition.

^E Others includes listed elements for which no specific limit is shown as well as unlisted metallic elements. The producer may analyze samples for trace elements not specified in the specification. However, such analysis is not required and may not cover all metallic Others elements. Should any analysis by the producer or the purchaser establish that an Others element exceeds the limit of Each or that the aggregate of several Others elements exceeds the limit of Total, the material shall be considered non-conforming.

F Other elements—Total shall be the sum of unspecified metallic elements 0.010 % or more each, rounded to the second decimal before determining the sum.

^G Beryllium 0.0003 maximum for welding electrode and welding rod only.

^HThe aluminum content is the difference between 100.00 % and the sum of all the other metallic elements and silicon present in amounts of 0.010 % or more each, rounded to the second decimal before determining the sum.

Vanadium 0.05-0.15 % zirconium 0.10-0.25 %. The total for other elements does not include vanadium and zirconium.

⁵ Available from Standardization Documents Order Desk, Bldg. 4 Section D, 700 Robbins Ave., Philadelphia, PA 19111-5094, Attn: NPODS.

⁶ Available from the Society of Automotive Engineers (SAE), 400 Commonwealth Drive, Warrendale, PA 15096-0001.

⁷ Available from The Aluminum Association, Inc. 1525 Wilson Boulevard, Arlington, VA 22209, www.aluminum.org.

⁸ Available from European Committee for Standardization, Central Secretariat (CEN), rue de Stassart 36, B1050 Brussels, Belgium. http://www.cen.eu/esearch

TABLE 2 Mechanical Property Limits^{A,B}

Aluminum 1100 See \$\sqrt{3}			Diameter or ness, mm		e Strength, MPa	Yield Si (0.2 % of	trength ^C set), MPa	Elongation, ^{C,D} min, %	
3	Temper	over	through	min	max	min	max		in 5 \times diameter (5.65 \sqrt{A}
10				Alu	uminum 1100				·
1122)		3.20	75	105				
114		3.20			105	20		25	22
116	H12								
118									
1112 all									
Alloy 2011 C			10.00						
Alloy 2011 3 3 20 40.00 310 260 10 9 40.00 50.00 295 235 10 10 40 50.00 90.00 280 205 11 50.00 90.00 275 125 16 14 and T451" 3.20 200.00 370 275 10 9 320 80.00 370 275 10 9 320 200.00 370 275 10 9 34 320 80.00 370 275 10 9 34 320 80.00 370 275 10 9 34 320 80.00 370 240 12 10 3.20 3.20 240 12 10 3.20 20.00 240 12 11 10 14 , T42", and T451" 3.20 20.00 380 220 16 16 14 17 3.20 20.00 380 220 16 18 14 18 3.20 20.00 380 220 16 19 320 380 20 10 3.20 380 20 10 3.20 380 20 10 3.20 380 20 10 3.20 380 380 380 38 7 10 3.20 200.00" 450 380 380 38 7 10 3.20 200.00" 450 380 380 38 7 10 3.20 200.00" 450 380 380 38 7 10 3.20 200.00" 450 380 380 38 7 10 3.20 200.00" 450 380 20 10 3.20 380 380 38 7 10 3.20 200.00" 450 380 380 38 7 10 3.20 200.00" 450 380 20 10	1112			75 E					
3 320 40.00 300 295 260 10 9 4 and T451" 3.20 20.00 275 125 16 14 6 and T451" 3.20 20.00 275 125 10 9 4 and T451" 3.20 20.00 275 125 10 9 8 3.20 80.00 370 275 10 9 8 3.20 80.00 370 275 10 9		all							
40 00 50 00 285 235 10 50 00 90 00 280 205 12 6 and T651 10.00 160.00 370 275 10 9 8 3 320 200.00 370 275 10 9 8 3 320 200.00 370 275 10 9 8 3 320 200.00 370 275 10 9 9 3 320 200.00 370 275 10 9 9 3 320 200.00 370 275 10 9 1		3.20	40.00			260		10	9
4 and T451 ^F 3.20 200.00 220 205 125 16 14 6 and T651 10.00 160.00 370 275 10 9 9 9 9 9 9 9 9 9									
*** A and T451 *** 3.20 200.00 275 125 16 14 16 18 18 18 18 18 18 18 19 18 19 19 10 9 10 9 10 9 10									
6 and T651	⁷ 4 and T451 ^{<i>F</i>}								
8									
Alloy 2014 °	T8								
3,20 200,00									
4, T42", and T451")		3.20						
4, T42", and T451" 3.20 380									
6, T62", and T651" 3.20 200.00' 380 220 16 14 3.20 200.00' 450 380 380 8 7	Γ4, T42 ^H , and T451 ^F								
Alloy 2017			200.00'	380		220			14
Alloy 2017° 3.20	Г6, Т62 ^н , and Т651 ^{<i>F</i>}		3.20	450					
3.20		3.20	200.00′			380		8	7
4, T42", and T451" 3,20 3,20 3,20 3,20 3,20 3,20 3,20 3,2			11		Alloy 2017 ^G	us			
)					:40"h a			
3.20	74 T49H and T451F			390	240	men.a			
3.20	14, 142 , and 1451		200.00 ^{I,J}						
3.20			Doc	ıımen	Alloy 2024 ^G	/iew			
320	 D		3.20						
3.20 10.00		3.20	200.00		240			16	14
14	Г36		3.20	475	011117 110				
12.50		3.20	10.00	A 3 475	<u> 52 1 1 1V1- 1 2</u>	360		10	
12.50	^{r4} nttns://standards.it	teh ai/catalo			e6-d1ab-41a		db55027aa	/astm-b211	m-12 ···
120.00		3.20						10	
160.00									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
3.20	T40H								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42.								
12.50									
160.00 200.00 425 310 8 160 3.20 425	7251 <i>F</i>								
16	331								
3.20	T6								
10									
3.20	「62 ^H								
Alloy 2219									
12.50	Γ851 ^{<i>F</i>}	12.50	160.00 ^{<i>L</i>}	455		400			4
Solution Solution					Alloy 2219				
Solution Solution	Γ851 ^{<i>F</i>}	12 50	50.00	400		275			3
Alloy 3003 D 3.20 95 130									
3.20 95 130									
3.20 95 130 35 25 22 112 10.00 115 114 10.00 140 116 10.00 165 118 10.00 185 1112 all 95 35)		3.20						
10.00									
10.00	112								
H16 10.00 165	114								
H18 10.00 185	116								
H112 all 95 35	118								
Alloy 4032	1112			95		35			
	:			E		E			
86 10.00 20.00 350 315 4 3					Alloy 4032				
	86	10.00	20.00	350		315		4	3

TABLE 2 Continued

		Diameter or ess, mm		Strength, MPa		trength ^C fset), MPa	Elongation, ^{C,D} min, %	
Temper	over	through	min	max	min	max	in 50 mm	in 5 \times diameter (5.65 \sqrt{A})
				Alloy 5052				<u> </u>
)		3.20	170	220				•••
100	3.20		170	220	65		25	22
H32	3.20	3.20 10.00	215 215		 160			
H34	3.20	3.20	235					
1101	3.20	10.00	235	•••	180		•••	
H36		3.20	255	***			•••	
	3.20	10.00	255		200			
H38		10.00	270 E		 E			
F	all					•••		•••
				Alloy 5056				
0		3.20		320				
H111	3.20	10.00	300	320			20	18
H12		10.00	315					
H32		10.00	300					•••
H14		10.00	360					
H34		10.00	345					
H18		10.00	400					
H38		10.00	380					
H192 H392		10.00 10.00	415 400				•	
	•••							•••
				Alloy 5154	de			
0		3.20	205	285	 75			
H32	3.20	10.00	205 4 250	285	75		25	22
H34	##.	10.00	270	dards.	iten.a			•••
H36	<u></u>	10.00	290					
H38		10.00	310	4 D	•			
H112	all	DUC	205	t Pres	75			
				Alloy 6013				
T651	12.50	100.00	385		360			6
T8	20.00	40.00	AS 400 B	211M-12	385			7
https://standords.it	40.00	140.00	395	6 dlab 41a	380	HL5500700	/actm h211	1 6
			\$15040a/90	Alloy 6020				
T8	5.00	10.00	295		275		12	
	10.00	50.00	290		270		12	10
	50.00	80.00	270	•••	250		•••	10
				illoy 6061 ^G				
0		3.20	***	155			•••	
	3.20	200.00		155			18	16
T4 and T451 ^F		3.20	205					
T42 ^H	3.20	200.00 ^J 200.00 ^J	205 205		110 95		18	16
T6, T62 ^H , and T651 ^F	3.20	3.20	290	···	95		18	16
10, 102 , and 1001	3.20	200.00 ^J	290	•••	240		10	9
T89 and T94		10.00	370		325			
				Alloy 6110				
		10.00	450		435		2	
10	***	10.00			400			
				Alloy 6262				
T6 and T651 ^F	3.20	200.00 ^L	290		240		10	9
T8 T9	20.00 3.20	50.00 50.00	310 360		295 330		12	10
10	50.00	50.00 80.00	360 345		315		5 	4 4
	55.55			 Alloy 7075 ^G	0.0	***		T
0		3.20		275				
	3.20	200.00		275			10	9
T6 T62 ^H		2 00	200		155			
T6, T62 ^H	 3.20	3.20 100.00 ^N	530 530		455 455		 7	6

TABLE 2 Continued

			IABLE	2 Continuea				
	Specified Diameter or Thickness, mm			Strength, Pa		trength ^C fset), MPa	Elongation, ^{C,D} min, %	
Temper	over	through	min	max	min	max	in 50 mm	in 5 \times diameter (5.65 \sqrt{A})
	3.20	100.00 ^N	530		455		7	
	100.00	160.00	515		440		7	
	160.00	200.00	505		425		7	
T73 and T7351 ^F		3.20	470					
	3.20	100.00	470		425		10	9
	100.00	120.00	455		380	•••	8	9
	120.00	160.00	440		360			7
Temper	Specified Diamet	ter or Thickness, m	ım			Bend Diameter Factor, N		
	over	through						
			Al	loy 2017				
T4, T42, and T451		3.20					3 ⁰	
	3.20	200.00 ^J					6 ⁰	
			Al	loy 2024				
0		3.20					1	
T351, T4, T42		3.20					3	
	3.20	160.00					6	
			Al	loy 3003				
0	a	all					0	
H12		10.00					2	
H14		10.00					2	
H16	•••	10.00					8	

^A To determine conformance to this specification, each value for tensile strength and for yield strength shall be rounded to the nearest 1 MPa and each value for elongation to the nearest 0.5 %, both in accordance with the rounding-off method of Practice E29.

- 4.2 Additionally, orders for material to this specification shall include the following information when required by the purchaser:
- 4.2.1 Whether heat treatment in accordance with Practice B918 is required (8.2),
- 4.2.2 Whether 7075-O material is required to develop requirements for T73 temper (see 10.1.2),
- 4.2.3 Whether bend testing is required for 2017, 2024, or 3003 (Section 12),
- 4.2.4 When specified finish of bar and rod is not required (Section 15),

- 4.2.5 Whether marking for identification is required (Section 16),
- 4.2.6 Whether ultrasonic inspection is required (Section 17, Table 3),
- 4.2.7 Whether inspection or witness of inspection and tests by the purchaser's representative is required prior to material shipment (Section 19),
 - 4.2.8 Whether certification is required (Section 21), and
- 4.2.9 Whether Practices B660 applies, and if so, the levels of preservation, packaging, and packing required (Section 22).

^B The basis for establishment of tensile property limits is shown in Annex A1.

^C The measurement of yield strength and elongation is not required for wire up through 3.20 mm in thickness or diameter.

^D Elongations in 50 mm apply to rectangular bar up through 12.5 mm thickness from which a standard rectangular tension test specimen is machined. The $5 \times$ diameter (5.65 \sqrt{A}) requirements, where *D* and *A* are diameter and cross-sectional area of the specimen, respectively, apply to round specimens tested in full-section or to standard or proportional, round-machined, tension test specimens.

^E There are no tensile requirements for material in the F temper but it usually can be expected that material 40 mm or less in thickness or diameter (except sections over 100 mm in width) will have a strength about equivalent to the H14 or H34 temper. As size increases the strength decreases to nearly that of the O temper.

For stress-relieved tempers, characteristics and properties other than those specified may differ somewhat from the corresponding characteristics and properties of material in the basic tempers.

^G Also available in the F temper for which no properties are specified and no tension tests are performed but for which tests are performed for confirmation of heat-treat response as required by Section 10.

H Material in the T42 or T62 tempers is not available from the materials producers. These properties can usually be obtained by the user when material is properly solution heat treated or solution and precipitation heat treated from O or F temper. These properties also apply to samples of material in the O or F temper that are solution heat treated or solution and precipitation heat treated by the producer to determine that the material will respond to proper heat treatment. Properties attained by the user, however, may be lower than those listed if the material has been formed or otherwise cold or hot worked, particularly in the O temper, prior to solution heat treatment.

¹ For rounds, maximum diameter is 200 mm; for square, rectangular, hexagonal, or octagonal bar, maximum thickness is 100 mm and maximum cross-sectional area is 23 000 mm².

^J For bar, maximum cross-sectional area is 32 000 mm².

K Minimum yield strength for 2024-T4 wire and rod over 3.20 mm in thickness or diameter, produced in coil form for both straight length and coiled products, is 275 MPa.

^L Properties listed for this size increment are applicable to rod with a maximum diameter of 160 mm and to square, rectangular, hexagonal, or octagonal bar having a maximum thickness of 100 mm and maximum cross-sectional area of 23 000 mm².

 $^{^{\}it M}$ Properties listed for this size increment are listed for rod only.

^N For rounds, maximum diameter is 100 mm; for square, hexagonal, or octagonal bar, maximum thickness is 90 mm; for rectangular bar, maximum thickness is 80 mm, with corresponding maximum width of 150 mm; for rectangular bar less than 80 mm in thickness, maximum width is 250 mm.

O Bend diameter factor values stated for this full size increment apply to T4 product only. Values listed also apply to T451 produce in the 12.2-200 mm size range.

TABLE 3 Ultrasonic Discontinuity Limits for Rolled or Cold-Finished Bar^A

	Size							
Alloys	Thickn	ess, mm	Maximum - Mass per	Discontinuity				
	over	through	Piece, kg	Class ^B				
2014, 9221 2024, 7075	12.50	35.00	300	В				
	35.00	80.00	300	Α				
	80.00	155.00	500	В				

^A Discontinuities in excess of those listed in this table shall be allowed if it is established that they will be removed by machining or that they are in noncritical areas.

5. Manufacture

5.1 The products covered by this specification shall be produced either by hot extruding and cold finishing or by hot rolling with or without cold finishing, at the option of the producer.

6. Quality Assurance

- 6.1 Responsibility for Inspection and Tests—Unless otherwise specified in the contract or purchase order, the producer is responsible for the performance of all inspection and test requirements specified herein. The producer may use their own or any other suitable facilities for the performance of the inspection and test requirements specified herein, unless disapproved by the purchaser in the order at the time of contract signing. The purchaser shall have the right to perform any of the inspections and tests set forth in this specification where such inspections are deemed necessary to assure that material conforms to prescribed requirements.
- 6.2 Lot Definition—An inspection lot shall be defined as follows:
- 6.2.1 For heat-treated tempers, an inspection lot shall consist of an identifiable quantity of material of the same mill form, alloy, temper, and nominal dimensions traceable to a heat-treat lot or lots, and subjected to inspection at one time.
- 6.2.2 For nonheat-treated tempers, an inspection lot shall consist of an identifiable quantity of material of the same mill form, alloy, temper, and nominal dimensions subjected to inspection at one time.

7. Chemical Composition

7.1 Limits—The bars, rods, and wire shall conform to the chemical composition limits specified in Table 1. Conformance shall be determined by the producer by taking samples in accordance with E716 when the ingots are poured and analyzing those samples in accordance with E607, E1251, E34 or EN 14242. At least one sample shall be taken for each group of ingots poured simultaneously from the same source of molten metal. If the producer has determined the chemical composition of the material during pouring of the ingots, they shall not be required to sample and analyze the product.

Note 4—It is standard practice in the United States aluminum industry to determine conformance to the chemical composition limits prior to further processing of ingots into wrought products. Due to the continuous nature of the process, it is not practical to keep a specific ingot analysis identified with a specific quantity of finished material.

- 7.2 If it becomes necessary to analyze bars, rod or wire for conformance to chemical composition limits, the method used to sample for the determination of chemical composition shall be by agreement between the producer and the purchaser. Analysis shall be performed in accordance with E716, E607, E1251, E34 or EN 14242 (ICP method). The number of samples taken for determination of chemical composition shall be as follows:
- 7.2.1 When samples are taken from the finished or semifinished product, a sample shall be taken to represent each 4000 lb, or fraction thereof, in the lot, except that no more than one sample shall be required per piece.
- 7.3 Other methods of analysis or in the case of dispute may be by agreement between the producer and the purchaser.

8. Heat Treatment

- 8.1 Unless otherwise specified in 8.2, producer or supplier heat treatment for the applicable tempers designated in Table 2 shall be in accordance with AMS 2772.
- 8.2 When specified, heat treatment of applicable tempers in Table 2 shall be in accordance with Practice B918.

9. Tensile Properties of Material as Supplied

- 9.1 *Limits*—The bar, rod, and wire shall conform to the tensile requirements in Table 2.
 - 9.2 Number of Specimens:
- 9.2.1 For material having a nominal mass up through 1.7 kg/linear m, one tension test specimen shall be taken for each 500 kg or fraction thereof in the lot. Only one specimen shall be taken from any one piece when more than one piece is available.
- 9.2.2 For material having a nominal mass over 1.7 kg/linear m, one tension test specimen shall be taken for each 300 m or fraction thereof in the lot. Only one specimen shall be taken from any one piece when more than one piece is available.
- 9.3 *Test Specimens*—Geometry of test specimens and the location in the product from which they are taken shall be as specified in Test Methods B557M.
- 9.4 *Test Methods*—The tension tests shall be made in accordance with Test Method B557M.

10. Producer Confirmation of Heat-Treat Response

- 10.1 In addition to the requirements of 9.1, material in Alloys 2014, 2017, 2024, and 6061 produced in the O or F temper (within the size limits specified in Table 2) shall, after proper solution heat treatment and natural aging for not less than 4 days at room temperature, conform to the properties specified in Table 2 for T42 temper material. The heat-treated samples may be tested prior to 4 days natural aging but if they fail to conform to the T42 temper properties, the tests may be repeated after completion of 4 days natural aging without prejudice.
- 10.1.1 Alloy 7075 material produced in the O or F temper (within the size limits specified in Table 2) shall, after proper solution heat treatment and precipitation heat treatment, conform to the properties specified in Table 2 for T62 temper material.
- 10.1.2 When specified, 7075-O material (within the size limits specified in Table 2) shall, after proper solution and

^B The discontinuity class limits are defined in Section 11 of Practice B594.